前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Python数据可视化入门教程

Python数据可视化入门教程

作者头像
张俊红
发布2023-03-21 09:26:12
2.4K0
发布2023-03-21 09:26:12
举报
文章被收录于专栏:张俊红

什么是数据可视化?数据可视化是为了使得数据更高效地反应数据情况,便于让读者更高效阅读,通过数据可视化突出数据背后的规律,以此突出数据中的重要因素,如果使用Python做数据可视化,建议学好如下这四个Python数据分析包,分别是:

Pandas、Matplotlib、Seaborn、Pyecharts

学好以上四个数据分析包,做可视化足够用了,全文较长,建议耐心看完,学习后即可使用Python做数据可视化,具体的代码实操部分可以实际用代码进行演示,这样才能更好的掌握,下面一起来学习~

01. Pandas

官网https://www.pypandas.cn/

Pandas 是 Python的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据,广泛应用于数据分析领域,Pandas 适用于处理与 Excel 表类似的表格数据,以及有序和无序的时间序列数据等。

Pandas 的主要数据结构是 Series(一维数据)和 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例,使用pandas进行数据分析流程包含数据整理与清洗、数据分析与建模、数据可视化与制表等阶段。

  • 灵活的分组功能:group by数据分组;
  • 直观地合并功能:merge数据连接;
  • 灵活地重塑功能:reshape数据重塑;

pandas库不仅可以做一些数据清洗的工作,还可以使用pandas作图,并且做图时,使用一行代码就可以轻松作图,详细的作图方法可以看代码中的注释。

代码语言:javascript
复制
#导入pandas库  
import pandas as pd    
#生成一个Series  
s=pd.Series([1,3,3,4], index=list('ABCD'))    

#括号内不指定图表类型,则默认生成直线图  
s.plot()
代码语言:javascript
复制
#条形图
s.plot(kind='bar')
代码语言:javascript
复制
#水平条形图   
s.plot.barh()
代码语言:javascript
复制
#饼图   
s.plot.pie()
代码语言:javascript
复制
#直方图   
s.plot.hist()
代码语言:javascript
复制
#密度图   
import numpy as np 

s=pd.Series(np.random.randn(1000))  #生成一列随机数   
s.plot.kde()   
s.plot.density()
代码语言:javascript
复制
#散点图   
import numpy as np 
#生成一个DataFrame  
df=pd.DataFrame(np.random.randn(1000,2),
                 columns=['X1','Y'])
df.plot.scatter(x='X1',y='Y')
代码语言:javascript
复制
#六角箱图   
df.plot.hexbin(x='X1',y='Y',gridsize=8)
代码语言:javascript
复制
#箱型图
df=pd.DataFrame(np.random.rand(10,2),columns=['A','B'])
df.plot.box()
代码语言:javascript
复制
#面积图
df=pd.DataFrame(np.random.randint(10,size=(4,4)),
                 columns=list('ABCD'),
                 index=list('WXYZ'))    

df.plot.area()

02. Matplotlib

官网https://www.matplotlib.org.cn/

Matplotlib是一个Python 2D绘图库,它以多种硬拷贝格式和跨平台的交互式环境生成出版物质量的图形。Matplotlib可用于Python脚本,Python和IPython Shell、Jupyter笔记本,Web应用程序服务器和四个图形用户界面工具包。

Matplotlib 尝试使容易的事情变得更容易,使困难的事情变得可能,只需几行代码就可以生成图表、直方图、功率谱、条形图、误差图、散点图等。

为了简单绘图,该 pyplot 模块提供了类似于MATLAB的界面,尤其是与IPython结合使用时,对于高级用户,您可以通过面向对象的界面或MATLAB用户熟悉的一组功能来完全控制线型,字体属性,轴属性等。

下面介绍matplotlib的用法,使用matplotlib除了可以作图外,还可以对于图表的参数做一些调整,使得图表更加美观,关于使用matplotlib的建议,可以做一些常用的图表模板,更换代码的数据源就可以生成图表,而不用一点一点的去调整参数。

代码语言:javascript
复制
#导入模块  
import matplotlib.pyplot as plt  

#设置风格  
plt.style.use('seaborn-white')  

#中文显示问题,如果没有这段代码,图表不显示中文汉字   
plt.rcParams['font.sans-serif'] =['SimHei']

这里首先导入matplotlib库,并使用了seaborn-white的图表风格,可以使用plt.style.available 查看图表的风格,选择一个自己喜欢的图表风格,在图表中不能显示汉字,使用一段代码就可以显示了。

代码语言:javascript
复制
#构建一个DataFrame 
import pandas as pd  
import matplotlib.pyplot as plt
  
df=pd.DataFrame({'X':[1,3,5,7]})  
df['Y']=df['X']**3  
df
代码语言:javascript
复制
#设置图像的大小 
plt.figure(facecolor='white',figsize=(9,6),dpi=100)  
plt.plot(df['X'],df['Y'])
   
#设置图像的标题 
plt.title('折线图',fontsize=15,color='b') 
 
#设置图像的X、Y轴标题大小,颜色,与坐标轴的距离  
plt.xlabel('X轴',fontsize=10,color='r',labelpad=15)  
plt.ylabel('Y轴',fontsize=10,color='g',rotation=0,labelpad=15)   

#设置起始坐标点 
plt.xlim([1,8])  
plt.ylim([1,350]) 
#plt.xticks([1,2,3,4])只显示1,2,3,4  
#plt.yticks([50,150,250,300])只显示50,150,250,300 
  
#图像的网格线进行设置 
plt.grid(color='r', linestyle='-.')

这里首先设置图像的大小,跟我们画画一样,选择多大的纸张去作图,一样的道理,然后设置坐标轴,起始坐标,网格线等。

有时候,要在一张图表上绘制多条线。

代码语言:javascript
复制
#多个图的绘图方法  
import numpy as np  
import matplotlib.pyplot as plt  

x=np.array([1,3,5])  
y1=x  
y2=x * 10  
y3=x * 20  
y4=x * 30

可以在一个plt.plot命令后继续加另一个plt.plot命令,可以在一张图上做另一条线。

代码语言:javascript
复制
plt.figure(facecolor='white')  
plt.plot(x,y1,label='A')  
plt.plot(x,y2,label='B')  
plt.plot(x,y3,label='C')  
plt.plot(x,y4,label='D')   

plt.legend()#显示图例

使用plt.subplots命令也可以作出同样的图。

代码语言:javascript
复制
#使用面向对象绘图  
fig,ax=plt.subplots(facecolor='white')  
plt.plot(x,y1,label='A')  
plt.plot(x,y2,label='B')  
plt.plot(x,y3,label='C')  
plt.plot(x,y4,label='D')   

plt.legend()#显示图例

多表绘制

下面介绍在一张图表的不同位置绘制不同的线型,使用plt.subplot命令首先确定绘图的位置,比如plt.subplot(223)表示在2*2分布的图表中第三个位置,其余的绘图命令相似。

代码语言:javascript
复制
plt.figure(facecolor='white',figsize=(9,6)) 

plt.subplot(221)  
plt.plot(x,y1,label='A',color='r')  
plt.xticks(fontsize=15)  
plt.legend()#显示图例   

plt.subplot(222)  
plt.plot(x,y2,label='B',color='y')  
plt.xticks(fontsize=15)  
plt.legend()#显示图例   

plt.subplot(223)  
plt.plot(x,y3,label='C',color='b')  
plt.xticks(fontsize=15)  
plt.legend()#显示图例 
  
plt.subplot(224)  
plt.plot(x,y4,label='D',color='g')  
plt.xticks(fontsize=15)  
plt.legend()#显示图例   

plt.tight_layout()#密集显示

除了使用plt.subplot命令确定绘图区域外,还可以用axs[ ]命令绘图,这种绘图方式是面向对象的绘图方式。

代码语言:javascript
复制
#面向对象绘制多图  
fig,axs=plt.subplots(2,2,facecolor='white',figsize=(9,6))  

axs[0,0].plot(x,y1,label='A',color='r')  
axs[0,1].plot(x,y2,label='B',color='y')  
axs[1,0].plot(x,y3,label='C',color='b')  
axs[1,1].plot(x,y4,label='D',color='g')

有时候绘制多张表时需共享一个坐标轴,可以使用sharex='all'命令。

代码语言:javascript
复制
#sharex='all'共享X轴  
fig,axs=plt.subplots(4,1,facecolor='white', figsize=(9,6), sharex='all')   
axs[0].plot(x,y1,label='A',color='r')  
axs[1].plot(x,y2,label='B',color='y')  
axs[2].plot(x,y3,label='C',color='b')  
axs[3].plot(x,y4,label='D',color='g')

设置全局变量

使用plt.rcParams命令对全局变量设置,包括字符显示、中文显示、背景颜色、标题大小、坐标轴字体大小,线型等。

代码语言:javascript
复制
#导入模块  
import matplotlib.pyplot as plt  

#设置风格  
plt.style.use('seaborn-white')  

#设置全局变量  
plt.rcParams['axes.unicode_minus'] = False #字符显示 
plt.rcParams['font.sans-serif'] =['SimHei'] #中文显示  
plt.rcParams['figure.facecolor'] = 'b' #设置图表背景颜色 
plt.rcParams['axes.facecolor'] = (0.8,0.9,0.8) #设置RGB颜色  
plt.rcParams['axes.titlesize'] = 20 #设置标题大小  
plt.rcParams['axes.labelsize'] = 20 #设置轴大小  
plt.rcParams['xtick.labelsize'] = 20 #设置X坐标大小  
plt.rcParams['ytick.labelsize'] = 20 #设置Y坐标大小  
plt.rcParams['lines.linestyle'] = '-.' #设置线型  

plt.plot(x,y1,label='A')  
plt.plot(x,y2,label='B')  
plt.plot(x,y3,label='C')  
plt.plot(x,y4,label='D')   
plt.title('折线图')  
plt.xlabel('X轴')  
plt.ylabel('Y轴')  
plt.legend()#显示图例

下图就是通过设置全局变量做的图,个人觉得并不美观,对于其他图表全局变量的设置,大家可以探索,做出更好看的图表。

03. Seaborn

官网http://seaborn.pydata.org/

Seaborn 是一个基于matplotlib的 Python 数据可视化库,它建立在matplotlib之上,并与Pandas数据结构紧密集成,用于绘制有吸引力和信息丰富的统计图形的高级界面。

Seaborn 可用于探索数据,它的绘图功能对包含整个数据集的数据框和数组进行操作,并在内部执行必要的语义映射和统计聚合以生成信息图,其面向数据集的声明式 API可以专注于绘图的不同元素的含义,而不是如何绘制它们的细节。

Matplotlib 拥有全面而强大的 API,几乎可以根据自己的喜好更改图形的任何属性,seaborn 的高级界面和 matplotlib 的深度可定制性相结合,使得Seaborn既可以快速探索数据,又可以创建可定制为出版质量最终产品的图形。

绘制多行图

将变量按照多行的形式进行绘制,使用sns.FacetGrid命令。

代码语言:javascript
复制
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_theme(style="white", rc={"axes.facecolor": (0, 0, 0, 0)})

rs = np.random.RandomState(1979)
x = rs.randn(500)
g = np.tile(list("ABCDEFGHIJ"), 50)
df = pd.DataFrame(dict(x=x, g=g))
m = df.g.map(ord)
df["x"] += m

pal = sns.cubehelix_palette(10, rot=-.25, light=.7)
g = sns.FacetGrid(df, row="g", hue="g", aspect=15, height=.5, palette=pal)

g.map(sns.kdeplot, "x",
      bw_adjust=.5, clip_on=False,
      fill=True, alpha=1, linewidth=1.5)
g.map(sns.kdeplot, "x", clip_on=False, color="w", lw=2, bw_adjust=.5)

g.refline(y=0, linewidth=2, linestyle="-", color=None, clip_on=False)

def label(x, color, label):
    ax = plt.gca()
    ax.text(0, .2, label, fontweight="bold", color=color,
            ha="left", va="center", transform=ax.transAxes)

g.map(label, "x")

g.figure.subplots_adjust(hspace=-.25)

g.set_titles("")
g.set(yticks=[], ylabel="")
g.despine(bottom=True, left=True)

绘制热力图

将数据的大小用热力图进行呈现,使用sns.heatmap命令。

代码语言:javascript
复制
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_theme()

# Load the example flights dataset and convert to long-form
flights_long = sns.load_dataset("flights")
flights = flights_long.pivot("month", "year", "passengers")

# Draw a heatmap with the numeric values in each cell
f, ax = plt.subplots(figsize=(9, 6))
sns.heatmap(flights, annot=True, fmt="d", linewidths=.5, ax=ax)

04. Pyecharts

官网https://pyecharts.org/#/

Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

Pyecharts具有简洁的 API 设计,使用如丝滑般流畅,支持链式调用,囊括了 30+ 种常见图表,应有尽有,支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab,拥有高度灵活的配置项,可轻松搭配出精美的图表。

Pyecharts强大的数据交互功能,使数据表达信息更加生动,增加了人机互动效果,并且数据呈现效果可直接导出为html文件,增加数据结果交互的机会,使得信息沟通更加容易。

绘制地图

Pyecharts有着丰富的图表素材,支持链式调用,如下是使用Pyecharts的地理图表功能,空间上直观显示数据可视化效果。

代码语言:javascript
复制
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker

c = (
    Map()
    .add("商家A", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Map-VisualMap(分段型)"),
        visualmap_opts=opts.VisualMapOpts(max_=200, is_piecewise=True),
    )
    .render("map_visualmap_piecewise.html")
)

绘制雷达图

使用Radar命令绘制出雷达图,用来显示多变量数据的图形方法。

代码语言:javascript
复制
from pyecharts import options as opts
from pyecharts.charts import Radar

v1 = [[4300, 10000, 28000, 35000, 50000, 19000]]
v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]
c = (
    Radar()
    .add_schema(
        schema=[
            opts.RadarIndicatorItem(name="销售", max_=6500),
            opts.RadarIndicatorItem(name="管理", max_=16000),
            opts.RadarIndicatorItem(name="信息技术", max_=30000),
            opts.RadarIndicatorItem(name="客服", max_=38000),
            opts.RadarIndicatorItem(name="研发", max_=52000),
            opts.RadarIndicatorItem(name="市场", max_=25000),
        ]
    )
    .add("预算分配", v1)
    .add("实际开销", v2)
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        legend_opts=opts.LegendOpts(selected_mode="single"),
        title_opts=opts.TitleOpts(title="Radar-单例模式"),
    )
    .render("radar_selected_mode.html")
)

以上介绍pandas如何绘制图表,同时引申matplotlib库的使用,并且介绍Seaborn和Pyecharts这两个数据可视化库,加以了解Python数据可视化内容,同时在数据可视化中学习多表绘制和设置全局变量,相信通过以上的学习,一定能对你学习Python数据可视化有所启发。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-03-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 俊红的数据分析之路 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 01. Pandas
  • 02. Matplotlib
  • 03. Seaborn
  • 04. Pyecharts
相关产品与服务
云服务器
云服务器(Cloud Virtual Machine,CVM)提供安全可靠的弹性计算服务。 您可以实时扩展或缩减计算资源,适应变化的业务需求,并只需按实际使用的资源计费。使用 CVM 可以极大降低您的软硬件采购成本,简化 IT 运维工作。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档