Spring Cloud Gateway是一个基于Spring Boot的API网关,提供了统一的访问入口,可以通过网关层面实现诸如限流、熔断等功能,从而保护后端服务。在本篇文章中,我们将重点介绍Spring Cloud Gateway中的限流功能。
限流(Rate limiting)是一种保护服务免受过度使用或滥用的方法,它可以控制请求的数量和速率,以防止超出服务能力的范围。Spring Cloud Gateway提供了多种限流方式,包括基于Redis、基于令牌桶和基于漏桶算法等。
下面我们将详细介绍如何在Spring Cloud Gateway中实现限流。
Redis是一种内存键值数据库,可以用来存储缓存、计数器等。在Spring Cloud Gateway中,我们可以使用Redis来实现限流功能。
在pom.xml文件中添加如下依赖:
xmlCopy code<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-gateway</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
在application.yml文件中添加Redis配置:
spring:
redis:
host: localhost
port: 6379
我们需要编写一个限流过滤器来实现基于Redis的限流。代码如下:
public class RedisRateLimiterGatewayFilterFactory extends AbstractGatewayFilterFactory<RedisRateLimiterGatewayFilterFactory.Config> {
private final RedisTemplate<String, String> redisTemplate;
public RedisRateLimiterGatewayFilterFactory(RedisTemplate<String, String> redisTemplate) {
super(Config.class);
this.redisTemplate = redisTemplate;
}
@Override
public GatewayFilter apply(Config config) {
return (exchange, chain) -> {
String key = exchange.getRequest().getHeaders().getFirst(config.getHeader());
if (key == null) {
throw new IllegalArgumentException("Header " + config.getHeader() + " not found");
}
String redisKey = config.getKeyResolver().apply(exchange);
String permits = redisTemplate.opsForValue().get(redisKey);
if (permits == null) {
redisTemplate.opsForValue().set(redisKey, String.valueOf(config.getPermits()));
redisTemplate.expire(redisKey, config.getDuration());
} else {
int remaining = Integer.parseInt(permits) - 1;
if (remaining < 0) {
throw new RateLimiterException();
}
redisTemplate.opsForValue().set(redisKey, String.valueOf(remaining));
}
return chain.filter(exchange);
};
}
public static class Config {
private String header = "X-RateLimit-Header";
private int permits = 10;
private Duration duration = Duration.ofSeconds(1);
private Function<ServerWebExchange, String> keyResolver = exchange -> exchange.getRequest().getPath().toString();
public String getHeader() {
return header;
}
public void setHeader(String header) {
this.header = header;
}
public int getPermits() {
return permits;
}
public void setPermits(int permits) {
this.permits = permits;
}
public Duration getDuration() {
return duration;
}
public void setDuration(Duration duration) {
this.duration = duration;
}
public Function<ServerWebExchange, String> getKeyResolver() {
return keyResolver;
}
public void setKeyResolver(Function<ServerWebExchange, String> keyResolver) {
this.keyResolver = keyResolver;
}
}
public static class RateLimiterException extends RuntimeException {
public RateLimiterException() {
super("Rate limit exceeded");
}
}
}
该过滤器的核心逻辑是:首先从请求头中获取一个标识符,然后使用这个标识符构造一个Redis键,使用Redis对这个键进行计数。如果当前计数小于等于允许的请求数量,则将计数减1,并继续执行后续过滤器和请求处理程序。否则,抛出一个限流异常。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。