前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >利用AidLux实现电离目标检测与实时锁定演示

利用AidLux实现电离目标检测与实时锁定演示

原创
作者头像
用户10559524
发布2023-05-10 14:59:07
3910
发布2023-05-10 14:59:07
举报
文章被收录于专栏:AidLux

电离目标检测与实时目标锁定

本效果由yolov8实现目标检测得到边框信息,sort通过对边框的检测,关联,新息,赋予id,锁定(跟踪)目标。

视频地址(16条消息) 利用AidLux实现电离目标检测与实时锁定演示_江暮的博客-CSDN博客

代码语言:javascript
复制
# aidlux相关
from cvs import *
import aidlite_gpu
from utils import detect_postprocess, preprocess_img, draw_detect_res, scale_boxes
import time
import cv2
import os
import numpy as np
import glob
import argparse
from filterpy.kalman import KalmanFilter
 
np.random.seed(0)
def linear_assignment(cost_matrix):
    try:
        import lap
        _, x, y = lap.lapjv(cost_matrix, extend_cost=True)
        return np.array([[y[i],i] for i in x if i >= 0]) #
    except ImportError:
        from scipy.optimize import linear_sum_assignment
        x, y = linear_sum_assignment(cost_matrix)
        return np.array(list(zip(x, y)))
 
 
def iou_batch(bb_test, bb_gt):
    """
    From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2]
    """
    bb_gt = np.expand_dims(bb_gt, 0)
    bb_test = np.expand_dims(bb_test, 1)
    
    xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0])
    yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
    xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
    yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
    w = np.maximum(0., xx2 - xx1)
    h = np.maximum(0., yy2 - yy1)
    wh = w * h
    o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])                                      
        + (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)                                              
    return(o)
 
 
def convert_bbox_to_z(bbox):
    """
    Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
        [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
        the aspect ratio
    """
    w = bbox[2] - bbox[0]
    h = bbox[3] - bbox[1]
    x = bbox[0] + w/2.
    y = bbox[1] + h/2.
    s = w * h    #scale is just area
    r = w / float(h)
    return np.array([x, y, s, r]).reshape((4, 1))
 
 
def convert_x_to_bbox(x, score=None):
    """
    Takes a bounding box in the centre form [x, y, s, r] and returns it in the form
        [x1,y1,x2,y2] where x1, y1 is the top left and x2, y2 is the bottom right
    """
    w = np.sqrt(x[2] * x[3])
    h = x[2] / w
    if(score==None):
        return np.array([x[0]-w/2., x[1]-h/2., x[0]+w/2., x[1]+h/2.]).reshape((1,4))
    else:
        return np.array([x[0]-w/2., x[1]-h/2., x[0]+w/2., x[1]+h/2., score]).reshape((1,5))
 
 
class KalmanBoxTracker(object):
    """
    This class represents the internal state of individual tracked objects observed as bbox.
    """
    count = 0
    def __init__(self,bbox):
        """
        Initialises a tracker using initial bounding box.
        """
        #define constant velocity model
        self.kf = KalmanFilter(dim_x=7, dim_z=4) 
        self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0],  [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
        self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
 
        self.kf.R[2:,2:] *= 10.
        self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
        self.kf.P *= 10.
        self.kf.Q[-1,-1] *= 0.01
        self.kf.Q[4:,4:] *= 0.01
 
        self.kf.x[:4] = convert_bbox_to_z(bbox)
        self.time_since_update = 0
        self.id = KalmanBoxTracker.count
        KalmanBoxTracker.count += 1
        self.history = []
        self.hits = 0
        self.hit_streak = 0
        self.age = 0
 
    def update(self,bbox):
        """
        Updates the state vector with observed bbox.
        """
        self.time_since_update = 0
        self.history = []
        self.hits += 1
        self.hit_streak += 1
        self.kf.update(convert_bbox_to_z(bbox))
 
    def predict(self):
        """
        Advances the state vector and returns the predicted bounding box estimate.
        """
        if((self.kf.x[6]+self.kf.x[2])<=0):
            self.kf.x[6] *= 0.0
        self.kf.predict()
        self.age += 1
        if(self.time_since_update>0):
            self.hit_streak = 0
        self.time_since_update += 1
        self.history.append(convert_x_to_bbox(self.kf.x))
        return self.history[-1]
 
    def get_state(self):
        """
        Returns the current bounding box estimate.
        """
        return convert_x_to_bbox(self.kf.x)
 
 
def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
    """
    Assigns detections to tracked object (both represented as bounding boxes)
    Returns 3 lists of matches, unmatched_detections and unmatched_trackers
    """
    if(len(trackers)==0):
        return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
 
    iou_matrix = iou_batch(detections, trackers)
 
    if min(iou_matrix.shape) > 0:
        a = (iou_matrix > iou_threshold).astype(np.int32)
        if a.sum(1).max() == 1 and a.sum(0).max() == 1:
            matched_indices = np.stack(np.where(a), axis=1)
        else:
            matched_indices = linear_assignment(-iou_matrix)
    else:
        matched_indices = np.empty(shape=(0,2))
 
    unmatched_detections = []
    for d, det in enumerate(detections):
        if(d not in matched_indices[:,0]):
            unmatched_detections.append(d)
    unmatched_trackers = []
    for t, trk in enumerate(trackers):
        if(t not in matched_indices[:,1]):
            unmatched_trackers.append(t)
 
    #filter out matched with low IOU
    matches = []
    for m in matched_indices:
        if(iou_matrix[m[0], m[1]]<iou_threshold):
            unmatched_detections.append(m[0])
            unmatched_trackers.append(m[1])
        else:
            matches.append(m.reshape(1,2))
    if(len(matches)==0):
        matches = np.empty((0,2),dtype=int)
    else:
        matches = np.concatenate(matches,axis=0)
 
    return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
 
 
class Sort(object):
    def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3):
        """
        Sets key parameters for SORT
        """
        self.max_age = max_age  # time_since_update > max_age, track被清除
        self.min_hits = min_hits
        self.iou_threshold = iou_threshold
        self.trackers = []
        self.frame_count = 0
 
    def update(self, dets=np.empty((0, 5))):
        """
        Params:
        dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
        Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).
        Returns the a similar array, where the last column is the object ID.
        NOTE: The number of objects returned may differ from the number of detections provided.
        """
        self.frame_count += 1
        # get predicted locations from existing trackers.
        trks = np.zeros((len(self.trackers), 5))
        to_del = []
        ret = []
        for t, trk in enumerate(trks):
            pos = self.trackers[t].predict()[0]
            trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
            if np.any(np.isnan(pos)):
                to_del.append(t)
        trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
        for t in reversed(to_del):
            self.trackers.pop(t)
        matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold)
 
        # update matched trackers with assigned detections
        for m in matched:
            self.trackers[m[1]].update(dets[m[0], :])
 
        # create and initialize new trackers for unmatched detections
        for i in unmatched_dets:
            trk = KalmanBoxTracker(dets[i,:])
            self.trackers.append(trk)
        i = len(self.trackers)
        for trk in reversed(self.trackers):
            d = trk.get_state()[0]
            if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
                ret.append(np.concatenate((d, [trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive
            i -= 1
            # remove dead tracklet
            if(trk.time_since_update > self.max_age):
                self.trackers.pop(i)
        if(len(ret)>0):
            return np.concatenate(ret)
        return np.empty((0,5))
 
 
if __name__ == '__main__':
    mot_tracker = Sort(max_age = 1,  # time_since_update>max_age, 清楚在跟目标
                       min_hits = 3,  # hit_streak>min_hits, 转为确认态
                       iou_threshold = 0.3) # create instance of the SORT tracker
    # tflite模型
    model_path = '/home/yolov8/models/8086_best_float32.tflite'
    # 定义输入输出shape
    in_shape = [1 * 640 * 640 * 3 * 4]  # HWC, float32
    out_shape = [1 * 8400 * 52 * 4]  # 8400: total cells, 52 = 48(num_classes) + 4(xywh), float32
 
    # AidLite初始化
    aidlite = aidlite_gpu.aidlite()
    # 载入模型
    res = aidlite.ANNModel(model_path, in_shape, out_shape, 4, 0)
    print(res)
 
    ''' 读取手机后置摄像头 '''
    cap = cvs.VideoCapture(0)
    frame_id = 0
    while True:
        frame = cap.read()
        if frame is None:
            continue
        frame_id += 1
        if frame_id % 3 != 0:
            continue
        time0 = time.time()
        # 预处理
        img = preprocess_img(frame, target_shape=(640, 640), div_num=255, means=None, stds=None)
 
        aidlite.setInput_Float32(img, 640, 640)
        # 推理
        aidlite.invoke()
        preds = aidlite.getOutput_Float32(0)
        preds = preds.reshape(1, 52, 8400)
        preds = detect_postprocess(preds, frame.shape, [640, 640, 3], conf_thres=0.25, iou_thres=0.45)
        print('1 batch takes {} s'.format(time.time() - time0))
        if len(preds) != 0:
            preds[:, :4] = scale_boxes([640, 640], preds[:, :4], frame.shape)
            ''' SORT锁定 '''
            preds_out = preds[:, :5]  # 数据切片,得到格式如[x1, y1, x2, y2, conf]的ndarray。
            trackers = mot_tracker.update(preds_out)  # predict -> associate -> update
            ''' 绘制结果 '''
            for d in trackers:
                cv2.putText(frame, str(int(d[4])), (int(d[0]), int(d[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 1)
                cv2.rectangle(frame, (int(d[0]), int(d[1])), (int(d[2]), int(d[3])), (0, 0, 255),thickness = 2)  
 
        cvs.imshow(frame)

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
腾讯智慧建筑 AI 能效
腾讯智慧建筑 AI 能效(Smart Building AI Energy Efficiency,下文中也叫微瓴能效)利用物联网、大数据、人工智能技术,结合能源领域资深专家行业经验,优化建筑能源系统运行参数。在保障建筑室内环境健康舒适的前提下,提高设备的运行效率,降低能源系统的能源费用及运维成本。实现能源精细化管理、AI 智能优化控制管理、能源设备设施智能管理“三理”联动。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档