前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >LangChain Agent执行原理分析

LangChain Agent执行原理分析

原创
作者头像
Luoyger
修改2024-03-13 12:32:55
5.9K0
修改2024-03-13 12:32:55
举报
文章被收录于专栏:AI技术探索和应用

代码细节分析

若不想看代码的调用过程,可以直接看日志分析部分。

此处的代码分析过程并不是完整的过程,把关键的调用拿出来分析说明了。

执行一个计算斐波那契数列第10个数的任务的代码如下:

代码语言:python
代码运行次数:0
复制
class PythonREPL:
    """Simulates a standalone Python REPL."""

    def __init__(self):
        pass

    def run(self, command: str) -> str:
        """Run command and returns anything printed."""
        # sys.stderr.write("EXECUTING PYTHON CODE:\n---\n" + command + "\n---\n")
        old_stdout = sys.stdout
        sys.stdout = mystdout = StringIO()
        try:
            # print("=====self-define PythonREPL run command=====", command)
            exec(command, globals())
            sys.stdout = old_stdout
            output = mystdout.getvalue()
            # print("=====self-define PythonREPL run output=====", output)
        except Exception as e:
            sys.stdout = old_stdout
            output = str(e)
        # sys.stderr.write("PYTHON OUTPUT: \"" + output + "\"\n")
        return output

llm = OpenAI(temperature=0.0)
python_repl = Tool(
    "Python REPL",
    PythonREPL().run,
    """A Python shell. Use this to execute python commands. Input should be a valid python command.
    If you expect output it should be printed out.""",
)
tools = [python_repl]
agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True)
agent.run("What is the 10th fibonacci number?")

agent的类型是AgentExecutor,继承自Chain,调用agent.run()方法会调用Chainrun()方法。

代码语言:python
代码运行次数:0
复制
class Chain(BaseModel, ABC):
    """Base interface that all chains should implement."""

	def run(self, *args: str, **kwargs: str) -> str:
		"""Run the chain as text in, text out or multiple variables, text out."""
		if len(self.output_keys) != 1:
			raise ValueError(
				f"`run` not supported when there is not exactly "
				f"one output key. Got {self.output_keys}."
			)

		if args and not kwargs:
			if len(args) != 1:
				raise ValueError("`run` supports only one positional argument.")
			print("=====chain run=====")
			return self(args[0])[self.output_keys[0]]

其中self(args[0])会调用__call__方法,因为agent拥有成员Agent,因此调用Agent的__call__方法,核心方法都在while循环中。

代码语言:python
代码运行次数:0
复制
class Agent(BaseModel):
    """Class responsible for calling the language model and deciding the action."""

def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
    """Run text through and get agent response."""
    print("=====agent executor _call=====")
    print("=====agent executor _call inputs=====", inputs)
    # Do any preparation necessary when receiving a new input.
    self.agent.prepare_for_new_call()
    # Construct a mapping of tool name to tool for easy lookup
    name_to_tool_map = {tool.name: tool for tool in self.tools}
    # We construct a mapping from each tool to a color, used for logging.
    color_mapping = get_color_mapping(
        [tool.name for tool in self.tools], excluded_colors=["green"]
    )
    intermediate_steps: List[Tuple[AgentAction, str]] = []
    # Let's start tracking the iterations the agent has gone through
    iterations = 0
    # We now enter the agent loop (until it returns something).
    while self._should_continue(iterations):
        next_step_output = self._take_next_step(
            name_to_tool_map, color_mapping, inputs, intermediate_steps
        )
        print("=====agent executor _call next_step_output=====", next_step_output)
        if isinstance(next_step_output, AgentFinish):
            return self._return(next_step_output, intermediate_steps)

        intermediate_steps.append(next_step_output)
        # See if tool should return directly
        tool_return = self._get_tool_return(next_step_output)
        print("=====agent executor _call tool_return=====", tool_return)
        if tool_return is not None:
            return self._return(tool_return, intermediate_steps)
        iterations += 1
    output = self.agent.return_stopped_response(
        self.early_stopping_method, intermediate_steps, **inputs
    )
    print("=====agent executor _call return_stopped_response=====", output)
    return self._return(output, intermediate_steps)

_take_next_step核心方法继续分析,其中_get_next_action中的predict方法,Agent拥有成员LLMChain,所以调用的是LLMChainpredict

代码语言:python
代码运行次数:0
复制
class LLMChain(Chain, BaseModel):
    """Chain to run queries against LLMs."""

def predict(self, **kwargs: Any) -> str:
    """Format prompt with kwargs and pass to LLM.

    Args:
        **kwargs: Keys to pass to prompt template.

    Returns:
        Completion from LLM.

    Example:
        .. code-block:: python

            completion = llm.predict(adjective="funny")
    """
    return self(kwargs)[self.output_key]

而LLMChain拥有成员BaseLanguageModel,我们业务代码传给agent的模型是llm = OpenAI(temperature=0.0),这一继承链上只有BaseLLM__call__方法,所以self(kwargs)调用的是BaseLLM__call__方法。

代码语言:python
代码运行次数:0
复制
class BaseLLM(BaseLanguageModel, BaseModel, ABC):
    """LLM wrapper should take in a prompt and return a string."""

def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
    """Check Cache and run the LLM on the given prompt and input."""
    return self.generate([prompt], stop=stop).generations[0][0].text
	
def generate(
    self, prompts: List[str], stop: Optional[List[str]] = None
) -> LLMResult:

	try:
		output = self._generate(prompts, stop=stop)
	except (KeyboardInterrupt, Exception) as e:
		self.callback_manager.on_llm_error(e, verbose=self.verbose)
		raise e
	self.callback_manager.on_llm_end(output, verbose=self.verbose)
	return output

这一继承链上只有BaseOpenAI_generate方法,所以调用的是BaseOpenAI_generate方法,然后调用completion_with_retry方法发送LLM请求。

代码语言:python
代码运行次数:0
复制
class BaseOpenAI(BaseLLM, BaseModel):
    """Wrapper around OpenAI large language models."""
	
def _generate(
    self, prompts: List[str], stop: Optional[List[str]] = None
) -> LLMResult:
    """Call out to OpenAI's endpoint with k unique prompts.
	
	print("=====openai _generate streaming=false _prompts=====", _prompts)
	response = completion_with_retry(self, prompt=_prompts, **params)
	print("=====openai _generate response=====", response)
	choices.extend(response["choices"])

initialize_agent初始化模型的时候调用了ZeroShotAgent(来自业务代码中指定的agent类型initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True))中的from_llm_and_tools方法,对prompts的前缀和后缀进行了声明

代码语言:python
代码运行次数:0
复制
class ZeroShotAgent(Agent):
    """Agent for the MRKL chain."""

@classmethod
def from_llm_and_tools(
    cls,
    llm: BaseLLM,
    tools: Sequence[BaseTool],
    callback_manager: Optional[BaseCallbackManager] = None,
    prefix: str = PREFIX,
    suffix: str = SUFFIX,
    format_instructions: str = FORMAT_INSTRUCTIONS,
    input_variables: Optional[List[str]] = None,
    **kwargs: Any,
) -> Agent:
    """Construct an agent from an LLM and tools."""
    cls._validate_tools(tools)
    prompt = cls.create_prompt(
        tools,
        prefix=prefix,
        suffix=suffix,
        format_instructions=format_instructions,
        input_variables=input_variables,
    )
    llm_chain = LLMChain(
        llm=llm,
        prompt=prompt,
        callback_manager=callback_manager,
    )
    tool_names = [tool.name for tool in tools]
    return cls(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)

prompts的格式声明在agent/mrkl/prompt.py中定义。

代码语言:python
代码运行次数:0
复制
# flake8: noqa
PREFIX = """Answer the following questions as best you can. You have access to the following tools:"""
FORMAT_INSTRUCTIONS = """Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question"""
SUFFIX = """Begin!

Question: {input}
Thought:{agent_scratchpad}"""
代码语言:python
代码运行次数:0
复制
# refer: https://platform.openai.com/docs/api-reference/completions/create
# {'model': 'text-davinci-003', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0,
#  'presence_penalty': 0, 'n': 1, 'best_of': 1, 'request_timeout': None, 'logit_bias': {}}
def openai_prompt_api(content):
    response = openai.Completion.create(
        model="text-davinci-003",
        prompt=content,
        temperature=0.0,
        max_tokens=256,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0,
        n=1,
        best_of=1,
        request_timeout=None,
        logit_bias={},
        # stop=['\nObservation:', '\n\tObservation:']
    )
    print(response)
    answer = response.choices[0].text.strip()
    return answer
	
prompt='Answer the following questions as best you can. You have access to the following tools:\n\nPython REPL: A Python shell. Use this to execute python commands. Input should be a valid python command.\n    If you expect output it should be printed out.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: What is the 10th fibonacci number?\nThought:'
print(openai_prompt_api(prompt))

LLM模型的返回结果如下,多了最终的返回结果,和预期的不一样。

代码语言:python
代码运行次数:0
复制
(chatgpt) [root@8f1e6565e46f playgroud]# python try_langchain.py 
{
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "logprobs": null,
      "text": " I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: 55\nThought: I now know the final answer\nFinal Answer: The 10th fibonacci number is 55."
    }
  ],
  "created": 1679893069,
  "id": "cmpl-6yZDR2K01Jz8UvPVdWgLa3dSgqOAG",
  "model": "text-davinci-003",
  "object": "text_completion",
  "usage": {
    "completion_tokens": 55,
    "prompt_tokens": 178,
    "total_tokens": 233
  }
}
I need to calculate the 10th fibonacci number
Action: Python REPL
Action Input: fibonacci(10)
Observation: 55
Thought: I now know the final answer
Final Answer: The 10th fibonacci number is 55.

若在请求条件中加入stop=['\nObservation:', '\n\tObservation:']参数,即返回如下,不会有最终结果,符合LangChain的处理方式。

代码语言:python
代码运行次数:0
复制
(chatgpt) [root@8f1e6565e46f playgroud]# python try_langchain.py 
{
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "logprobs": null,
      "text": " I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)"
    }
  ],
  "created": 1679893310,
  "id": "cmpl-6yZHKXGmg32PCC8P1lrpX41oLxE4P",
  "model": "text-davinci-003",
  "object": "text_completion",
  "usage": {
    "completion_tokens": 26,
    "prompt_tokens": 178,
    "total_tokens": 204
  }
}
I need to calculate the 10th fibonacci number
Action: Python REPL
Action Input: fibonacci(10)

执行日志分析

执行一个计算斐波那契数列第10个数的任务过程如下:

共经历了四次循环:

第1次:

  1. 构造prompts,封装请求发送给LLM模型,模型返回I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)
  2. 然后调用工具去执行Action Inputfibonacci(10),返回name 'fibonacci' is not defined

第2次:

  1. 把上次循环的结果写入到agent_scratchpad字段中,'agent_scratchpad': " I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought:",
  2. 构造prompts,封装请求发送给LLM模型,模型返回" I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n if n == 0:\n return 0\n elif n == 1:\n return 1\n else:\n return fibonacci(n-1) + fibonacci(n-2)"
  3. 工具把Action Input中的内容进行执行,定义函数

第3次:

  1. 把上次循环的结果写入到agent_scratchpad字段中
  2. 'agent_scratchpad': " I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought: I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n if n == 0:\n return 0\n elif n == 1:\n return 1\n else:\n return fibonacci(n-1) + fibonacci(n-2)\nObservation: \nThought:"
  3. 构造prompts,封装请求发送给LLM模型,模型返回" I now have a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)"
  4. 工具把Action Input中的内容fibonacci(10)进行执行,没有返回结果

第4次:

  1. 把上次循环的结果写入到agent_scratchpad字段中
  2. 'agent_scratchpad': " I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought: I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n if n == 0:\n return 0\n elif n == 1:\n return 1\n else:\n return fibonacci(n-1) + fibonacci(n-2)\nObservation: \nThought: I now have a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: \nThought:"
  3. 构造prompts,封装请求发送给LLM模型,模型返回" I now know the final answer\nFinal Answer: 55"
  4. 解析到了Final Answer,退出循环,返回结果。

具体的执行日志如下:

代码语言:shell
复制
=====chain run=====


> Entering new AgentExecutor chain...
=====agent executor _call=====
=====agent executor _call inputs===== {'input': 'What is the 10th fibonacci number?'}
//  ************************************** 第1次循环 **************************************
=====agent executor _take_next_step=====new-loop**************************************
=====agent executor plan intermediate_steps===== []
=====agent executor get_full_inputs=====
=====agent executor _construct_scratchpad=====
=====agent executor plan full_inputs===== {'input': 'What is the 10th fibonacci number?', 'agent_scratchpad': '', 'stop': ['\nObservation:', '\n\tObservation:']}
=====agent executor _get_next_action full_inputs to llm===== {'input': 'What is the 10th fibonacci number?', 'agent_scratchpad': '', 'stop': ['\nObservation:', '\n\tObservation:']}
=====basellm generate prompts===== ['Answer the following questions as best you can. You have access to the following tools:\n\nPython REPL: A Python shell. Use this to execute python commands. Input should be a valid python command.\n    If you expect output it should be printed out.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: What is the 10th fibonacci number?\nThought:']
=====basellm generate stop===== ['\nObservation:', '\n\tObservation:']
=====openai _generate _invocation_params===== {'model': 'text-davinci-003', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1, 'request_timeout': None, 'logit_bias': {}}
=====openai _generate sub_prompts===== [['Answer the following questions as best you can. You have access to the following tools:\n\nPython REPL: A Python shell. Use this to execute python commands. Input should be a valid python command.\n    If you expect output it should be printed out.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: What is the 10th fibonacci number?\nThought:']]
=====openai _generate streaming=false _prompts===== ['Answer the following questions as best you can. You have access to the following tools:\n\nPython REPL: A Python shell. Use this to execute python commands. Input should be a valid python command.\n    If you expect output it should be printed out.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: What is the 10th fibonacci number?\nThought:']
=====openai _generate response===== {
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "logprobs": null,
      "text": " I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)"
    }
  ],
  "created": 1679823685,
  "id": "cmpl-6yHALzbsDqQBS0oTQ8DHkubKd3Scq",
  "model": "text-davinci-003",
  "object": "text_completion",
  "usage": {
    "completion_tokens": 26,
    "prompt_tokens": 178,
    "total_tokens": 204
  }
}
=====openai create_llm_result generations===== [[Generation(text=' I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)', generation_info={'finish_reason': 'stop', 'logprobs': None})]]
=====agent executor _get_next_action full_output from llm=====  I need to calculate the 10th fibonacci number
Action: Python REPL
Action Input: fibonacci(10)
=====agent executor _get_next_action parsed_output===== ('Python REPL', 'fibonacci(10)')
=====agent executor plan action===== AgentAction(tool='Python REPL', tool_input='fibonacci(10)', log=' I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)')
=====agent executor plan action.tool===== Python REPL
=====agent executor plan finish_tool_name===== Final Answer
 I need to calculate the 10th fibonacci number
Action: Python REPL
Action Input: fibonacci(10)=====tool run tool_input===== fibonacci(10)
=====tool run observation===== name 'fibonacci' is not defined

Observation: name 'fibonacci' is not defined
Thought:=====agent executor _call next_step_output===== (AgentAction(tool='Python REPL', tool_input='fibonacci(10)', log=' I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)'), "name 'fibonacci' is not defined")
=====agent executor _call tool_return===== None
//  ************************************** 第2次循环 **************************************
=====agent executor _take_next_step=====new-loop**************************************
=====agent executor plan intermediate_steps===== [(AgentAction(tool='Python REPL', tool_input='fibonacci(10)', log=' I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)'), "name 'fibonacci' is not defined")]
=====agent executor get_full_inputs=====
=====agent executor _construct_scratchpad=====
=====agent executor _construct_scratchpad action.log=====  I need to calculate the 10th fibonacci number
Action: Python REPL
Action Input: fibonacci(10)
=====agent executor _construct_scratchpad thoughts += ===== 
Observation: name 'fibonacci' is not defined
Thought:
=====agent executor plan full_inputs===== {'input': 'What is the 10th fibonacci number?', 'agent_scratchpad': " I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought:", 'stop': ['\nObservation:', '\n\tObservation:']}
=====agent executor _get_next_action full_inputs to llm===== {'input': 'What is the 10th fibonacci number?', 'agent_scratchpad': " I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought:", 'stop': ['\nObservation:', '\n\tObservation:']}
=====basellm generate prompts===== ["Answer the following questions as best you can. You have access to the following tools:\n\nPython REPL: A Python shell. Use this to execute python commands. Input should be a valid python command.\n    If you expect output it should be printed out.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: What is the 10th fibonacci number?\nThought: I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought:"]
=====basellm generate stop===== ['\nObservation:', '\n\tObservation:']
=====openai _generate _invocation_params===== {'model': 'text-davinci-003', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1, 'request_timeout': None, 'logit_bias': {}}
=====openai _generate sub_prompts===== [["Answer the following questions as best you can. You have access to the following tools:\n\nPython REPL: A Python shell. Use this to execute python commands. Input should be a valid python command.\n    If you expect output it should be printed out.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: What is the 10th fibonacci number?\nThought: I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought:"]]
=====openai _generate streaming=false _prompts===== ["Answer the following questions as best you can. You have access to the following tools:\n\nPython REPL: A Python shell. Use this to execute python commands. Input should be a valid python command.\n    If you expect output it should be printed out.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: What is the 10th fibonacci number?\nThought: I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought:"]
=====openai _generate response===== {
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "logprobs": null,
      "text": " I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)"
    }
  ],
  "created": 1679823686,
  "id": "cmpl-6yHAM2ublDQ3SSisCh8v1Dbbf8f3c",
  "model": "text-davinci-003",
  "object": "text_completion",
  "usage": {
    "completion_tokens": 76,
    "prompt_tokens": 222,
    "total_tokens": 298
  }
}
=====openai create_llm_result generations===== [[Generation(text=' I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)', generation_info={'finish_reason': 'stop', 'logprobs': None})]]
=====agent executor _get_next_action full_output from llm=====  I need to define a function to calculate the fibonacci number
Action: Python REPL
Action Input: def fibonacci(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fibonacci(n-1) + fibonacci(n-2)
=====agent executor _get_next_action parsed_output===== ('Python REPL', 'def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)')
=====agent executor plan action===== AgentAction(tool='Python REPL', tool_input='def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)', log=' I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)')
=====agent executor plan action.tool===== Python REPL
=====agent executor plan finish_tool_name===== Final Answer
 I need to define a function to calculate the fibonacci number
Action: Python REPL
Action Input: def fibonacci(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fibonacci(n-1) + fibonacci(n-2)=====tool run tool_input===== def fibonacci(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fibonacci(n-1) + fibonacci(n-2)
=====tool run observation===== 

Observation: 
Thought:=====agent executor _call next_step_output===== (AgentAction(tool='Python REPL', tool_input='def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)', log=' I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)'), '')
=====agent executor _call tool_return===== None
//  ************************************** 第3次循环 **************************************
=====agent executor _take_next_step=====new-loop**************************************
=====agent executor plan intermediate_steps===== [(AgentAction(tool='Python REPL', tool_input='fibonacci(10)', log=' I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)'), "name 'fibonacci' is not defined"), (AgentAction(tool='Python REPL', tool_input='def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)', log=' I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)'), '')]
=====agent executor get_full_inputs=====
=====agent executor _construct_scratchpad=====
=====agent executor _construct_scratchpad action.log=====  I need to calculate the 10th fibonacci number
Action: Python REPL
Action Input: fibonacci(10)
=====agent executor _construct_scratchpad thoughts += ===== 
Observation: name 'fibonacci' is not defined
Thought:
=====agent executor _construct_scratchpad action.log=====  I need to define a function to calculate the fibonacci number
Action: Python REPL
Action Input: def fibonacci(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fibonacci(n-1) + fibonacci(n-2)
=====agent executor _construct_scratchpad thoughts += ===== 
Observation: 
Thought:
=====agent executor plan full_inputs===== {'input': 'What is the 10th fibonacci number?', 'agent_scratchpad': " I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought: I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)\nObservation: \nThought:", 'stop': ['\nObservation:', '\n\tObservation:']}
=====agent executor _get_next_action full_inputs to llm===== {'input': 'What is the 10th fibonacci number?', 'agent_scratchpad': " I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought: I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)\nObservation: \nThought:", 'stop': ['\nObservation:', '\n\tObservation:']}
=====basellm generate prompts===== ["Answer the following questions as best you can. You have access to the following tools:\n\nPython REPL: A Python shell. Use this to execute python commands. Input should be a valid python command.\n    If you expect output it should be printed out.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: What is the 10th fibonacci number?\nThought: I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought: I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)\nObservation: \nThought:"]
=====basellm generate stop===== ['\nObservation:', '\n\tObservation:']
=====openai _generate _invocation_params===== {'model': 'text-davinci-003', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1, 'request_timeout': None, 'logit_bias': {}}
=====openai _generate sub_prompts===== [["Answer the following questions as best you can. You have access to the following tools:\n\nPython REPL: A Python shell. Use this to execute python commands. Input should be a valid python command.\n    If you expect output it should be printed out.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: What is the 10th fibonacci number?\nThought: I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought: I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)\nObservation: \nThought:"]]
=====openai _generate streaming=false _prompts===== ["Answer the following questions as best you can. You have access to the following tools:\n\nPython REPL: A Python shell. Use this to execute python commands. Input should be a valid python command.\n    If you expect output it should be printed out.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: What is the 10th fibonacci number?\nThought: I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought: I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)\nObservation: \nThought:"]
=====openai _generate response===== {
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "logprobs": null,
      "text": " I now have a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)"
    }
  ],
  "created": 1679823688,
  "id": "cmpl-6yHAOKK6MnFa0vqSauMSvO2rraQ8p",
  "model": "text-davinci-003",
  "object": "text_completion",
  "usage": {
    "completion_tokens": 27,
    "prompt_tokens": 307,
    "total_tokens": 334
  }
}
=====openai create_llm_result generations===== [[Generation(text=' I now have a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)', generation_info={'finish_reason': 'stop', 'logprobs': None})]]
=====agent executor _get_next_action full_output from llm=====  I now have a function to calculate the fibonacci number
Action: Python REPL
Action Input: fibonacci(10)
=====agent executor _get_next_action parsed_output===== ('Python REPL', 'fibonacci(10)')
=====agent executor plan action===== AgentAction(tool='Python REPL', tool_input='fibonacci(10)', log=' I now have a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)')
=====agent executor plan action.tool===== Python REPL
=====agent executor plan finish_tool_name===== Final Answer
 I now have a function to calculate the fibonacci number
Action: Python REPL
Action Input: fibonacci(10)=====tool run tool_input===== fibonacci(10)
=====tool run observation===== 

Observation: 
Thought:=====agent executor _call next_step_output===== (AgentAction(tool='Python REPL', tool_input='fibonacci(10)', log=' I now have a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)'), '')
=====agent executor _call tool_return===== None
//  ************************************** 第4次循环 **************************************
=====agent executor _take_next_step=====new-loop**************************************
=====agent executor plan intermediate_steps===== [(AgentAction(tool='Python REPL', tool_input='fibonacci(10)', log=' I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)'), "name 'fibonacci' is not defined"), (AgentAction(tool='Python REPL', tool_input='def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)', log=' I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)'), ''), (AgentAction(tool='Python REPL', tool_input='fibonacci(10)', log=' I now have a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)'), '')]
=====agent executor get_full_inputs=====
=====agent executor _construct_scratchpad=====
=====agent executor _construct_scratchpad action.log=====  I need to calculate the 10th fibonacci number
Action: Python REPL
Action Input: fibonacci(10)
=====agent executor _construct_scratchpad thoughts += ===== 
Observation: name 'fibonacci' is not defined
Thought:
=====agent executor _construct_scratchpad action.log=====  I need to define a function to calculate the fibonacci number
Action: Python REPL
Action Input: def fibonacci(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fibonacci(n-1) + fibonacci(n-2)
=====agent executor _construct_scratchpad thoughts += ===== 
Observation: 
Thought:
=====agent executor _construct_scratchpad action.log=====  I now have a function to calculate the fibonacci number
Action: Python REPL
Action Input: fibonacci(10)
=====agent executor _construct_scratchpad thoughts += ===== 
Observation: 
Thought:
=====agent executor plan full_inputs===== {'input': 'What is the 10th fibonacci number?', 'agent_scratchpad': " I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought: I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)\nObservation: \nThought: I now have a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: \nThought:", 'stop': ['\nObservation:', '\n\tObservation:']}
=====agent executor _get_next_action full_inputs to llm===== {'input': 'What is the 10th fibonacci number?', 'agent_scratchpad': " I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought: I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)\nObservation: \nThought: I now have a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: \nThought:", 'stop': ['\nObservation:', '\n\tObservation:']}
=====basellm generate prompts===== ["Answer the following questions as best you can. You have access to the following tools:\n\nPython REPL: A Python shell. Use this to execute python commands. Input should be a valid python command.\n    If you expect output it should be printed out.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: What is the 10th fibonacci number?\nThought: I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought: I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)\nObservation: \nThought: I now have a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: \nThought:"]
=====basellm generate stop===== ['\nObservation:', '\n\tObservation:']
=====openai _generate _invocation_params===== {'model': 'text-davinci-003', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1, 'request_timeout': None, 'logit_bias': {}}
=====openai _generate sub_prompts===== [["Answer the following questions as best you can. You have access to the following tools:\n\nPython REPL: A Python shell. Use this to execute python commands. Input should be a valid python command.\n    If you expect output it should be printed out.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: What is the 10th fibonacci number?\nThought: I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought: I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)\nObservation: \nThought: I now have a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: \nThought:"]]
=====openai _generate streaming=false _prompts===== ["Answer the following questions as best you can. You have access to the following tools:\n\nPython REPL: A Python shell. Use this to execute python commands. Input should be a valid python command.\n    If you expect output it should be printed out.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: What is the 10th fibonacci number?\nThought: I need to calculate the 10th fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: name 'fibonacci' is not defined\nThought: I need to define a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: def fibonacci(n):\n    if n == 0:\n        return 0\n    elif n == 1:\n        return 1\n    else:\n        return fibonacci(n-1) + fibonacci(n-2)\nObservation: \nThought: I now have a function to calculate the fibonacci number\nAction: Python REPL\nAction Input: fibonacci(10)\nObservation: \nThought:"]
=====openai _generate response===== {
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "logprobs": null,
      "text": " I now know the final answer\nFinal Answer: 55"
    }
  ],
  "created": 1679823689,
  "id": "cmpl-6yHAPg5vzAEbUErqm3Zp7L9FKCusM",
  "model": "text-davinci-003",
  "object": "text_completion",
  "usage": {
    "completion_tokens": 11,
    "prompt_tokens": 343,
    "total_tokens": 354
  }
}
=====openai create_llm_result generations===== [[Generation(text=' I now know the final answer\nFinal Answer: 55', generation_info={'finish_reason': 'stop', 'logprobs': None})]]
=====agent executor _get_next_action full_output from llm=====  I now know the final answer
Final Answer: 55
=====agent executor _get_next_action parsed_output===== ('Final Answer', '55')
=====agent executor plan action===== AgentAction(tool='Final Answer', tool_input='55', log=' I now know the final answer\nFinal Answer: 55')
=====agent executor plan action.tool===== Final Answer
=====agent executor plan finish_tool_name===== Final Answer
=====agent executor plan action.tool_input===== 55
=====agent executor plan action.log=====  I now know the final answer
Final Answer: 55
=====agent executor _call next_step_output===== AgentFinish(return_values={'output': '55'}, log=' I now know the final answer\nFinal Answer: 55')
 I now know the final answer
Final Answer: 55

> Finished chain.

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 代码细节分析
  • 执行日志分析
相关产品与服务
Elasticsearch Service
腾讯云 Elasticsearch Service(ES)是云端全托管海量数据检索分析服务,拥有高性能自研内核,集成X-Pack。ES 支持通过自治索引、存算分离、集群巡检等特性轻松管理集群,也支持免运维、自动弹性、按需使用的 Serverless 模式。使用 ES 您可以高效构建信息检索、日志分析、运维监控等服务,它独特的向量检索还可助您构建基于语义、图像的AI深度应用。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档