在美团初赛一个pickle反序列化中R i o c
的过滤直接把我搞头大了,去翻了一便源码学了一下才把题目解出, 比赛结束之后我就直接熬了一夜直接把全部操作的源码看了一遍并且后面部分操作我自己测试了一遍, 然后将每个操作的实现过程以及操作demo都写了注释,在这里挂我作为笔记本的博客分享一下吧(主要看操作注释部分
就行,后面的内容就是我把整个pickle.py文件按照作用和行号分段列了一下)
先将我写了注释的98到200行提取出来:
# Pickle opcodes. See pickletools.py for extensive docs. The listing
# here is in kind-of alphabetical order of 1-character pickle code.
# pickletools groups them by purpose.
# 说明:
# 1.如果对栈顶元素只说了取出,而没有说弹出的话那就说明只是将栈顶元素复制一份放到一个变量或者就是后面的操作对栈顶元素进行更新修改,但是这个栈顶元素是不会弹出的
# 2.部分说明中对数据进行操作先弹出然后进行操作再进行压栈,但是对照源码可能是对栈数组直接进行直接截取而并没有pop弹出或者append的压栈操作,我这里描述为弹出和压栈的过程是为了便于理解
# 3.用于指定后面需要读取的数据大小的字节读出来之后,有可能是按照字符字面大小读取,也可能是按照其16进制大小进行数据读取,例如字符'1'='\x31',0x31=49可能是读取1字节大小也肯能是读取49字节大小,注意我的注释描述
# 4._struct.unpack解压<i格式数据的时候需要传入4字节大小的数据,然后会把4个字节左右顺序调换,得到一个8位的16进制数,最后将其转为一个10进制整数,例如_struct.unpack('<i', b'\x00\x01\x00\x00')[0]=>0x00001000=>256
# 5.struct.unpack解压<Q格式数据则是需要传入8字节大小数据,转换操作同上,例如unpack('<Q', b'\x00\x01\x00\x00\x00\x00\x00\x00')[0] => 0x0000000000000100 => 256
MARK = b'(' #向栈中压入一个Mark标记
STOP = b'.' #相当于停止当前的反序列化过程
POP = b'0' #从栈中pop出一个元素,就是删除栈顶元素
POP_MARK = b'1' #从栈中不断pop元素直到遇到Mark标记
DUP = b'2' #向栈中再压入一个当前的栈顶元素,就是复制一份当前栈顶元素然后进行压栈
FLOAT = b'F' #读取当前行到行末尾,然后转为float类型,向栈中压入一个float浮点数
INT = b'I' #向栈中压入一个int整数,整数就是当前行的最后一个字节,不过如果整数为01的时候压入的是True,为00的时候压入的是False
BININT = b'J' #从后面的输入中读取4个字节并且使用unpack通过'<i'的格式将4字节的buffer数据解包转为int类型,后面不能换行,直接家下一步的操作b"(S'a'\nK\x01\x01\x01\x01."
BININT1 = b'K' #和上面BININT一样,不过K操作只读取一个字节的数据b"(S'a'\nK\x01."
LONG = b'L' #读取当前行到行末尾,然后转为int类型,但如果后面是字符L的话会先去掉最后一个字符L再转int
BININT2 = b'M' #从后面的输入中读取2个字节并且使用unpack通过'<H'的格式将2字节的buffer作为一个2进制数解包为int,后面不能换行,直接加下一步的操作b"(S'a'\nM\x01\x01."
NONE = b'N' #向栈中压入一个None元素,后面不能换行,直接加下一步的操作b"(S'a'\nN."
PERSID = b'P' #读取当前行到行末尾,将读取到的数据作为id,通过persistent_load函数获得obj对象返回后将obj对象压栈,默认情况没用,要重写persistent_load函数才能生效
BINPERSID = b'Q' #和上面作用一样,从当前栈中弹出一个元素作为id,通过persistent_load...
REDUCE = b'R' #从当前栈中弹出两次元素,第一次是函数参数args,第二次是函数func,执行func(args)
STRING = b'S' #向栈中压入一个string字符串,内容就是后面的数据,后面的字符串第一个和最后一个必须是单引号b"(S'a'\nS''a''\n."
BINSTRING = b'T' #从后面数据读取4字节数据,通过unpack使用<i格式将数据解压后变为int类型, 然后将其作为一个长度, 后面读取这个指定长度的数据作为字符串进行压栈b"(S'a'\nT\x10\x00\x00\x000123456789abcdef."
# _struct.unpack('<i', b"\x10\x00\x00\x00") => (16,)
SHORT_BINSTRING= b'U' #先读取一个字节数据作为长度,然后按照这个长度读取字符串,读出的字符串压栈
UNICODE = b'V' #读出当前行后面的全部数据,然后进行Unicode解码,将解码内容压栈b'V\\u0061\n.'
BINUNICODE = b'X' #读出4字节数据通过unpack使用<I格式解压,将解压得到的数据作为长度,然后进行数据读取b'X\x10\x00\x00\x00abcdef0123456789.'
APPEND = b'a' #先pop出栈一个变量var1,然后获取当前栈顶元素var2,执行栈顶元素的append函数,就是将一开始的栈顶元素弹出,然后又加到下一个栈顶数组中b"]S'h0cksr'\na." => 得到['h0cksr']
BUILD = b'b' #这个操作就是设置元素属性的操作
# 先pop出栈一个变量var1,然后获取当前栈顶元素var2,获取var2的__setstate__子成员作为var3,如果var3非空,那就执行var3(var1),这个操作正常就是通过__setstate__设置变量的属性
# 但是上面的var3为空也有别的处理:
# 1.检查var1是否为tuple类型且长度为2,如果是的话那就将其分别赋值为state,slotstate
# 2.检查state是否为空,如果不为空尝试取出state.items()然后使用k,v键值对的方式便利,最后通过修改var2.__dict__的方式修改var2的属性,也就是使得var2[k]=v,var2.k=v
# 3.检查slotstate是否为空,乳沟不为空和第2步一样,取出slotstate.items()通过k,v键值对方式便利,然后使用setattr方法设置var2属性,最后效果也是var2[k]=v,var2.k=v
GLOBAL = b'c' #导入一个模块,首先读取当前行后面的全部内容适应utf-8解码得到的字符串作为module,然后再读出下一行的内容同样解析出字符串作为那么,最后导入module.name这个包
DICT = b'd' #将栈中的数据弹出到上一个Mark为止,然后按照key:value的方式逐个解析然后放入到一个字典中,将最后得到的字典压栈b"(S'key1'\nS'val1'\nS'key2'\nS'val2'\nd." => {'key1': 'val1', 'key2': 'val2'}
EMPTY_DICT = b'}' #没什么好说的,就是往栈中压入一个空字典
APPENDS = b'e' #先将栈中元素不断弹出知道Mark标记,然后将弹出的全部元素放入items中,再取出栈顶作为list_obj,之后执行下面两步操作:
# 1.先取出extend=list_obj.extend,然后执行extend(items)
# 2.取出append = list_obj.append,然后使用for循环遍历items得到item,然后每次循环都执行一次append(item)
# 看到这里应该想到函数触发的方法,我们只需要使用b操作将list_obj的extend改为一个危险的函数方法,然后再让参数进入items,就可以通过extend(items)的方式调用任意构造的危险函数了
GET = b'g' #读取后面的全部本行数据,然后转为int类型放入变量i中,使用i作为索引,从缓存区取出数据mem[i],然后将这个从缓存中取出的变量压栈
BINGET = b'h' #后面读取一个字节的数据,然后使用字符16进制大小作为下标索引,从缓存mem中读数据,将读出的内容压栈,下面就是一个获取缓存中下标为1的数据的实例b"S'h0cksr'\np1\nS't'\n0h\x01."
INST = b'i' #两次pop出栈读出数据并且均进行解码操作使其变为字符串格式,
# 1. 第一第二次弹出的数据分别放入module和name中,先导入moudle模块,然后name通过.逐个获取出里面的子成员,最后返回目标子成员(可能是函数也可能是类或变量)var1
# 2. 继续进行出栈,直到遇到Mark标志,将出栈的数据作为参数,var1位方法,执行var1(Mark弹出数据)
# 3. 将生成的实例化对象压栈
LONG_BINGET = b'j' #先读出4字节大小数据流,然后通过unpack使用<I格式解压得到int类型数据i,将i作为下标,从缓存中获取变量mem[i],将获取到的数据压栈
LIST = b'l' #将上一次Mark之后的数据全部弹出,并且将其存放到一个数组中,然后在将这个数组压栈b"(S'h0cksr'\np1\nS't'\nl."
EMPTY_LIST = b']' #没什么好说,往栈中压入一个空数组
OBJ = b'o' #先是将上一次Mark之后的数据全部弹出,得到一个数组var1,然后又在var1中pop取出最后一个数据作为var2,之后执行以下过程:
# 1.检查弹出数据后的var1数组是否为空,如果var1非空,或者弹出的var2属于type类型,或者弹出的var2有__getinitargs__属性成员,那么就会执行var2(var1)
# 2.如果以上条件均不满足,那就执行var2.__new__(var2)
# 3.将执行结果压入栈中
PUT = b'p' #读取后面全部当前行的数据,然后转为int类型的变量i,然后赋值当前栈顶元素存到memo[i]中
BINPUT = b'q' #和上一个一样,不同的是下标i是通过读取1个字节的数据,然后直接当做下标
LONG_BINPUT = b'r' #和上一个一样,不同的是下标i是通过读取4个字节的数据,然后通过unpack使用<I模式解压得到的整数当做下标
SETITEM = b's' #先在栈中pop弹出第一个数据作为value,然后在pop弹出第二个元素作为key,再获取当前栈顶元素记为dict,给栈顶元素赋值dict[key]=value
TUPLE = b't' #弹出上一次Mark之后的全部数据大农一个list数组中,然后使用tuple函数将其转为元组格式再把这个元组压入栈中
EMPTY_TUPLE = b')' #没什么好说,往栈中压入一个空元组
SETITEMS = b'u' #先弹出上一次Mark之后的全部元素放入一个数组items中,然后获取栈顶元素记为dict,通过i=0,2,3...获取items中的数据,执行dict[items[i]] = items[i + 1]给栈顶的字典元素添加键值对
BINFLOAT = b'G' #先读取8字节数据,然后使用unpack通过<d格式的解压,将得到的float数据压栈
TRUE = b'I01\n' # not an opcode; see INT docs in pickletools.py
FALSE = b'I00\n' # not an opcode; see INT docs in pickletools.py
# Protocol 2
PROTO = b'\x80' #用于声明pickle协议版本
NEWOBJ = b'\x81'#(这个很有用) #从栈中弹出两次变量,第一次弹出的变量记为var1,第二次弹出的变量记为var2,然后就会通过cls.__new__(var2, *var1)生成实例化对象,然后将生成的对象压栈
EXT1 = b'\x82' #'''\x82,\x83,\x84这三个操作都是和extension registry扩展注册表有关的,但是拓展注册表主要维护4个从copyreg导入的映射字典
EXT2 = b'\x83' # dispatch_tablecopyreg, _extension_registry, _inverted_registry, _extension_cache
EXT4 = b'\x84' # 但是从头到尾貌似这几个核心表单都没有发生过变化(也可能是我没注意到而已)'''
TUPLE1 = b'\x85' #将栈顶元素弹出放到一个元组中再将这个元组压栈,就是将栈顶放到一个元组里面的作用b"S'h0cksr'\n\x85." => ('h0cksr',)
TUPLE2 = b'\x86' #将栈顶的两个元素弹出,栈顶弹出为var1,继续弹出一个为var2,然后组成一个元组然后将这个元组压栈,得到(var2,var1),b"S'h0cksr1'\nS'h0cksr2'\n\x86." => ('h0cksr1', 'h0cksr2')
TUPLE3 = b'\x87' #和上面一样,不够该操作是弹出三个元素形成元组b"S'h0cksr1'\nS'h0cksr2'\nS'h0cksr3'\n\x87." => ('h0cksr1', 'h0cksr2', 'h0cksr3')
NEWTRUE = b'\x88' #向栈中压入一个True
NEWFALSE = b'\x89' #向栈中压入一个False
LONG1 = b'\x8a' #先读取一个字节,以该字节16进制数为大小size,从后面的数据读取size个字节,然后将读取到的数据转为long类型
LONG4 = b'\x8b' #读取4字节数据,通过unpack的<i格式将数据解压得到一个整数,以这个整数为字节大小读取后面的数据
_tuplesize2code = [EMPTY_TUPLE, TUPLE1, TUPLE2, TUPLE3]#就是元组操作合集,分别是向栈中压入空数组,将最后1个元素放入元组后将元组压栈,将最后2个元素放入元组后将元组压栈,将最后3个元素放入元组后将元组压栈
# Protocol 3 (Python 3.x)#这里要注意一下,后面的操作是有python3方才支持
BINBYTES = b'B' #先读取4字节数据通过unpack使用<i格式将数据解压,将得到的结果作为大小向后读取相应字节数,然后将读取到的全部字节压栈,注意一下,压栈的是原始的比特流数据b'B\x06\x00\x00\x00h0cksr.' => b'h0cksr'
SHORT_BINBYTES = b'C' #读取一个字节,以它的16进制数作为大小向后读取对应字节的数据b'C\x06h0cksr.' => b'h0cksr'
# Protocol 4
SHORT_BINUNICODE = b'\x8c' #先读取一个字节,以这个字节的16进制为大小向后读取对应字节的数据,然后使用utf-8的格式解码数据为字符串格式,然后将这个字符串压栈b'\x8c\x06h0cksr.' => h0cksr
BINUNICODE8 = b'\x8d' #先读取8字节数据然后通过unpack使用<Q格式解压数据,将得到的结果作为大小向后读取相应字节数,然后将读取到的数据使用utf-8格式解压为字符串,将字符串压栈b'\x8d\x06\x00\x00\x00\x00\x00\x00\x00h0cksr.' => h0cksr
BINBYTES8 = b'\x8e' #同上读取8字节数据<Q格式解压,然后读取数据,但是直接将比特流数据压栈而不会解码b'\x8e\x06\x00\x00\x00\x00\x00\x00\x00h0cksr.' => b'h0cksr'
EMPTY_SET = b'\x8f' #向栈中压入一个set类型的空集合(set()没有指定iterable的时候返回的是一个空集合)
ADDITEMS = b'\x90' #先pop弹出一个元素作为items,记栈顶元素为top,然后检查top是否为set类型,如果是的话就执行top.update(items),如果top不是set类型那就使用for遍历items,逐个执行top.add(item)
FROZENSET = b'\x91' #弹出栈顶元素作为items,然后执行frozenset(items)生成一个frozenset类型的变量,并将这个变量压栈
NEWOBJ_EX = b'\x92'#(这个很有用) #和NEWOBJ差不多,先从栈中弹出三个元素,第一个,第二个,第三个弹出的元素分别记为var1,var2,var3,然后执行cls.__new__(var3, *var2, **var1)之后将执行生成的对象压栈
STACK_GLOBAL = b'\x93'#(这个很有用) #和GLOBAL操作一样但是导入的模块从栈上获取,先弹出一个元素为name,然后再弹出一个元素moudle,要求两个元素都必须是字符擦混类型,然后到处moudle.name,在将导出的内容压栈b"S'os'\nS'system'\n\x93." => os.system
MEMOIZE = b'\x94' #将当前栈顶元素添加到缓存列表的末尾(注意栈顶不会弹出)
FRAME = b'\x95' #后面先是读取8字节数据通过unpack使用<Q格式将数据解压得到的结果作为大小,向后读取对应字节的数据,然后将读取到的数据进行正常pickle反序列化(感觉用不用这个操作没啥差别,但是细节差别的话看源码)
下面就是我添加了注释之后的pickle.py
源码,官方的源码的话可以看官方pickle源码
主要关注两部分
dispatch
的字典中,key就是操作对应的操作名, value就是定定义的对应函数"""Create portable serialized representations of Python objects.
See module copyreg for a mechanism for registering custom picklers.
See module pickletools source for extensive comments.
Classes:
Pickler
Unpickler
Functions:
dump(object, file)
dumps(object) -> string
load(file) -> object
loads(string) -> object
Misc variables:
__version__
format_version
compatible_formats
"""
from types import FunctionType
from copyreg import dispatch_table
from copyreg import _extension_registry, _inverted_registry, _extension_cache
from itertools import islice
from functools import partial
import sys
from sys import maxsize
from struct import pack, unpack
import re
import io
import codecs
import _compat_pickle
__all__ = ["PickleError", "PicklingError", "UnpicklingError", "Pickler",
"Unpickler", "dump", "dumps", "load", "loads"]
# Shortcut for use in isinstance testing
bytes_types = (bytes, bytearray)
# These are purely informational; no code uses these.
format_version = "4.0" # File format version we write
compatible_formats = ["1.0", # Original protocol 0
"1.1", # Protocol 0 with INST added
"1.2", # Original protocol 1
"1.3", # Protocol 1 with BINFLOAT added
"2.0", # Protocol 2
"3.0", # Protocol 3
"4.0", # Protocol 4
] # Old format versions we can read
# This is the highest protocol number we know how to read.
HIGHEST_PROTOCOL = 4
# The protocol we write by default. May be less than HIGHEST_PROTOCOL.
# We intentionally write a protocol that Python 2.x cannot read;
# there are too many issues with that.
DEFAULT_PROTOCOL = 3
class PickleError(Exception):
"""A common base class for the other pickling exceptions."""
pass
class PicklingError(PickleError):
"""This exception is raised when an unpicklable object is passed to the
dump() method.
"""
pass
class UnpicklingError(PickleError):
"""This exception is raised when there is a problem unpickling an object,
such as a security violation.
Note that other exceptions may also be raised during unpickling, including
(but not necessarily limited to) AttributeError, EOFError, ImportError,
and IndexError.
"""
pass
# An instance of _Stop is raised by Unpickler.load_stop() in response to
# the STOP opcode, passing the object that is the result of unpickling.
class _Stop(Exception):
def __init__(self, value):
self.value = value
# Jython has PyStringMap; it's a dict subclass with string keys
try:
from org.python.core import PyStringMap
except ImportError:
PyStringMap = None
注:对memo的描述好像不大对劲,不过不想改了,,,,
# Pickle opcodes. See pickletools.py for extensive docs. The listing
# here is in kind-of alphabetical order of 1-character pickle code.
# pickletools groups them by purpose.
# 说明:
# 1.如果对栈顶元素只说了取出,而没有说弹出的话那就说明只是将栈顶元素复制一份放到一个变量或者就是后面的操作对栈顶元素进行更新修改,但是这个栈顶元素是不会弹出的
# 2.部分说明中对数据进行操作先弹出然后进行操作再进行压栈,但是对照源码可能是对栈数组直接进行直接截取而并没有pop弹出或者append的压栈操作,我这里描述为弹出和压栈的过程是为了便于理解
# 3.用于指定后面需要读取的数据大小的字节读出来之后,有可能是按照字符字面大小读取,也可能是按照其16进制大小进行数据读取,例如字符'1'='\x31',0x31=49可能是读取1字节大小也肯能是读取49字节大小,注意我的注释描述
# 4._struct.unpack解压<i格式数据的时候需要传入4字节大小的数据,然后会把4个字节左右顺序调换,得到一个8位的16进制数,最后将其转为一个10进制整数,例如_struct.unpack('<i', b'\x00\x01\x00\x00')[0]=>0x00001000=>256
# 5.struct.unpack解压<Q格式数据则是需要传入8字节大小数据,转换操作同上,例如unpack('<Q', b'\x00\x01\x00\x00\x00\x00\x00\x00')[0] => 0x0000000000000100 => 256
MARK = b'(' #向栈中压入一个Mark标记
STOP = b'.' #相当于停止当前的反序列化过程
POP = b'0' #从栈中pop出一个元素,就是删除栈顶元素
POP_MARK = b'1' #从栈中不断pop元素直到遇到Mark标记
DUP = b'2' #向栈中再压入一个当前的栈顶元素,就是复制一份当前栈顶元素然后进行压栈
FLOAT = b'F' #读取当前行到行末尾,然后转为float类型,向栈中压入一个float浮点数
INT = b'I' #向栈中压入一个int整数,整数就是当前行的最后一个字节,不过如果整数为01的时候压入的是True,为00的时候压入的是False
BININT = b'J' #从后面的输入中读取4个字节并且使用unpack通过'<i'的格式将4字节的buffer数据解包转为int类型,后面不能换行,直接家下一步的操作b"(S'a'\nK\x01\x01\x01\x01."
BININT1 = b'K' #和上面BININT一样,不过K操作只读取一个字节的数据b"(S'a'\nK\x01."
LONG = b'L' #读取当前行到行末尾,然后转为int类型,但如果后面是字符L的话会先去掉最后一个字符L再转int
BININT2 = b'M' #从后面的输入中读取2个字节并且使用unpack通过'<H'的格式将2字节的buffer作为一个2进制数解包为int,后面不能换行,直接加下一步的操作b"(S'a'\nM\x01\x01."
NONE = b'N' #向栈中压入一个None元素,后面不能换行,直接加下一步的操作b"(S'a'\nN."
PERSID = b'P' #读取当前行到行末尾,将读取到的数据作为id,通过persistent_load函数获得obj对象返回后将obj对象压栈,默认情况没用,要重写persistent_load函数才能生效
BINPERSID = b'Q' #和上面作用一样,从当前栈中弹出一个元素作为id,通过persistent_load...
REDUCE = b'R' #从当前栈中弹出两次元素,第一次是函数参数args,第二次是函数func,执行func(args)
STRING = b'S' #向栈中压入一个string字符串,内容就是后面的数据,后面的字符串第一个和最后一个必须是单引号b"(S'a'\nS''a''\n."
BINSTRING = b'T' #从后面数据读取4字节数据,通过unpack使用<i格式将数据解压后变为int类型, 然后将其作为一个长度, 后面读取这个指定长度的数据作为字符串进行压栈b"(S'a'\nT\x10\x00\x00\x000123456789abcdef."
# _struct.unpack('<i', b"\x10\x00\x00\x00") => (16,)
SHORT_BINSTRING= b'U' #先读取一个字节数据作为长度,然后按照这个长度读取字符串,读出的字符串压栈
UNICODE = b'V' #读出当前行后面的全部数据,然后进行Unicode解码,将解码内容压栈b'V\\u0061\n.'
BINUNICODE = b'X' #读出4字节数据通过unpack使用<I格式解压,将解压得到的数据作为长度,然后进行数据读取b'X\x10\x00\x00\x00abcdef0123456789.'
APPEND = b'a' #先pop出栈一个变量var1,然后获取当前栈顶元素var2,执行栈顶元素的append函数,就是将一开始的栈顶元素弹出,然后又加到下一个栈顶数组中b"]S'h0cksr'\na." => 得到['h0cksr']
BUILD = b'b' #这个操作就是设置元素属性的操作
# 先pop出栈一个变量var1,然后获取当前栈顶元素var2,获取var2的__setstate__子成员作为var3,如果var3非空,那就执行var3(var1),这个操作正常就是通过__setstate__设置变量的属性
# 但是上面的var3为空也有别的处理:
# 1.检查var1是否为tuple类型且长度为2,如果是的话那就将其分别赋值为state,slotstate
# 2.检查state是否为空,如果不为空尝试取出state.items()然后使用k,v键值对的方式便利,最后通过修改var2.__dict__的方式修改var2的属性,也就是使得var2[k]=v,var2.k=v
# 3.检查slotstate是否为空,乳沟不为空和第2步一样,取出slotstate.items()通过k,v键值对方式便利,然后使用setattr方法设置var2属性,最后效果也是var2[k]=v,var2.k=v
GLOBAL = b'c' #导入一个模块,首先读取当前行后面的全部内容适应utf-8解码得到的字符串作为module,然后再读出下一行的内容同样解析出字符串作为那么,最后导入module.name这个包
DICT = b'd' #将栈中的数据弹出到上一个Mark为止,然后按照key:value的方式逐个解析然后放入到一个字典中,将最后得到的字典压栈b"(S'key1'\nS'val1'\nS'key2'\nS'val2'\nd." => {'key1': 'val1', 'key2': 'val2'}
EMPTY_DICT = b'}' #没什么好说的,就是往栈中压入一个空字典
APPENDS = b'e' #先将栈中元素不断弹出知道Mark标记,然后将弹出的全部元素放入items中,再取出栈顶作为list_obj,之后执行下面两步操作:
# 1.先取出extend=list_obj.extend,然后执行extend(items)
# 2.取出append = list_obj.append,然后使用for循环遍历items得到item,然后每次循环都执行一次append(item)
# 看到这里应该想到函数触发的方法,我们只需要使用b操作将list_obj的extend改为一个危险的函数方法,然后再让参数进入items,就可以通过extend(items)的方式调用任意构造的危险函数了
GET = b'g' #读取后面的全部本行数据,然后转为int类型放入变量i中,使用i作为索引,从缓存区取出数据mem[i],然后将这个从缓存中取出的变量压栈
BINGET = b'h' #后面读取一个字节的数据,然后使用字符16进制大小作为下标索引,从缓存mem中读数据,将读出的内容压栈,下面就是一个获取缓存中下标为1的数据的实例b"S'h0cksr'\np1\nS't'\n0h\x01."
INST = b'i' #两次pop出栈读出数据并且均进行解码操作使其变为字符串格式,
# 1. 第一第二次弹出的数据分别放入module和name中,先导入moudle模块,然后name通过.逐个获取出里面的子成员,最后返回目标子成员(可能是函数也可能是类或变量)var1
# 2. 继续进行出栈,直到遇到Mark标志,将出栈的数据作为参数,var1位方法,执行var1(Mark弹出数据)
# 3. 将生成的实例化对象压栈
LONG_BINGET = b'j' #先读出4字节大小数据流,然后通过unpack使用<I格式解压得到int类型数据i,将i作为下标,从缓存中获取变量mem[i],将获取到的数据压栈
LIST = b'l' #将上一次Mark之后的数据全部弹出,并且将其存放到一个数组中,然后在将这个数组压栈b"(S'h0cksr'\np1\nS't'\nl."
EMPTY_LIST = b']' #没什么好说,往栈中压入一个空数组
OBJ = b'o' #先是将上一次Mark之后的数据全部弹出,得到一个数组var1,然后又在var1中pop取出最后一个数据作为var2,之后执行以下过程:
# 1.检查弹出数据后的var1数组是否为空,如果var1非空,或者弹出的var2属于type类型,或者弹出的var2有__getinitargs__属性成员,那么就会执行var2(var1)
# 2.如果以上条件均不满足,那就执行var2.__new__(var2)
# 3.将执行结果压入栈中
PUT = b'p' #读取后面全部当前行的数据,然后转为int类型的变量i,然后赋值当前栈顶元素存到memo[i]中
BINPUT = b'q' #和上一个一样,不同的是下标i是通过读取1个字节的数据,然后直接当做下标
LONG_BINPUT = b'r' #和上一个一样,不同的是下标i是通过读取4个字节的数据,然后通过unpack使用<I模式解压得到的整数当做下标
SETITEM = b's' #先在栈中pop弹出第一个数据作为value,然后在pop弹出第二个元素作为key,再获取当前栈顶元素记为dict,给栈顶元素赋值dict[key]=value
TUPLE = b't' #弹出上一次Mark之后的全部数据大农一个list数组中,然后使用tuple函数将其转为元组格式再把这个元组压入栈中
EMPTY_TUPLE = b')' #没什么好说,往栈中压入一个空元组
SETITEMS = b'u' #先弹出上一次Mark之后的全部元素放入一个数组items中,然后获取栈顶元素记为dict,通过i=0,2,3...获取items中的数据,执行dict[items[i]] = items[i + 1]给栈顶的字典元素添加键值对
BINFLOAT = b'G' #先读取8字节数据,然后使用unpack通过<d格式的解压,将得到的float数据压栈
TRUE = b'I01\n' # not an opcode; see INT docs in pickletools.py
FALSE = b'I00\n' # not an opcode; see INT docs in pickletools.py
# Protocol 2
PROTO = b'\x80' #用于声明pickle协议版本
NEWOBJ = b'\x81'#(这个很有用) #从栈中弹出两次变量,第一次弹出的变量记为var1,第二次弹出的变量记为var2,然后就会通过cls.__new__(var2, *var1)生成实例化对象,然后将生成的对象压栈
EXT1 = b'\x82' #'''\x82,\x83,\x84这三个操作都是和extension registry扩展注册表有关的,但是拓展注册表主要维护4个从copyreg导入的映射字典
EXT2 = b'\x83' # dispatch_tablecopyreg, _extension_registry, _inverted_registry, _extension_cache
EXT4 = b'\x84' # 但是从头到尾貌似这几个核心表单都没有发生过变化(也可能是我没注意到而已)'''
TUPLE1 = b'\x85' #将栈顶元素弹出放到一个元组中再将这个元组压栈,就是将栈顶放到一个元组里面的作用b"S'h0cksr'\n\x85." => ('h0cksr',)
TUPLE2 = b'\x86' #将栈顶的两个元素弹出,栈顶弹出为var1,继续弹出一个为var2,然后组成一个元组然后将这个元组压栈,得到(var2,var1),b"S'h0cksr1'\nS'h0cksr2'\n\x86." => ('h0cksr1', 'h0cksr2')
TUPLE3 = b'\x87' #和上面一样,不够该操作是弹出三个元素形成元组b"S'h0cksr1'\nS'h0cksr2'\nS'h0cksr3'\n\x87." => ('h0cksr1', 'h0cksr2', 'h0cksr3')
NEWTRUE = b'\x88' #向栈中压入一个True
NEWFALSE = b'\x89' #向栈中压入一个False
LONG1 = b'\x8a' #先读取一个字节,以该字节16进制数为大小size,从后面的数据读取size个字节,然后将读取到的数据转为long类型
LONG4 = b'\x8b' #读取4字节数据,通过unpack的<i格式将数据解压得到一个整数,以这个整数为字节大小读取后面的数据
_tuplesize2code = [EMPTY_TUPLE, TUPLE1, TUPLE2, TUPLE3]#就是元组操作合集,分别是向栈中压入空数组,将最后1个元素放入元组后将元组压栈,将最后2个元素放入元组后将元组压栈,将最后3个元素放入元组后将元组压栈
# Protocol 3 (Python 3.x)#这里要注意一下,后面的操作是有python3方才支持
BINBYTES = b'B' #先读取4字节数据通过unpack使用<i格式将数据解压,将得到的结果作为大小向后读取相应字节数,然后将读取到的全部字节压栈,注意一下,压栈的是原始的比特流数据b'B\x06\x00\x00\x00h0cksr.' => b'h0cksr'
SHORT_BINBYTES = b'C' #读取一个字节,以它的16进制数作为大小向后读取对应字节的数据b'C\x06h0cksr.' => b'h0cksr'
# Protocol 4
SHORT_BINUNICODE = b'\x8c' #先读取一个字节,以这个字节的16进制为大小向后读取对应字节的数据,然后使用utf-8的格式解码数据为字符串格式,然后将这个字符串压栈b'\x8c\x06h0cksr.' => h0cksr
BINUNICODE8 = b'\x8d' #先读取8字节数据然后通过unpack使用<Q格式解压数据,将得到的结果作为大小向后读取相应字节数,然后将读取到的数据使用utf-8格式解压为字符串,将字符串压栈b'\x8d\x06\x00\x00\x00\x00\x00\x00\x00h0cksr.' => h0cksr
BINBYTES8 = b'\x8e' #同上读取8字节数据<Q格式解压,然后读取数据,但是直接将比特流数据压栈而不会解码b'\x8e\x06\x00\x00\x00\x00\x00\x00\x00h0cksr.' => b'h0cksr'
EMPTY_SET = b'\x8f' #向栈中压入一个set类型的空集合(set()没有指定iterable的时候返回的是一个空集合)
ADDITEMS = b'\x90' #先pop弹出一个元素作为items,记栈顶元素为top,然后检查top是否为set类型,如果是的话就执行top.update(items),如果top不是set类型那就使用for遍历items,逐个执行top.add(item)
FROZENSET = b'\x91' #弹出栈顶元素作为items,然后执行frozenset(items)生成一个frozenset类型的变量,并将这个变量压栈
NEWOBJ_EX = b'\x92'#(这个很有用) #和NEWOBJ差不多,先从栈中弹出三个元素,第一个,第二个,第三个弹出的元素分别记为var1,var2,var3,然后执行cls.__new__(var3, *var2, **var1)之后将执行生成的对象压栈
STACK_GLOBAL = b'\x93'#(这个很有用) #和GLOBAL操作一样但是导入的模块从栈上获取,先弹出一个元素为name,然后再弹出一个元素moudle,要求两个元素都必须是字符擦混类型,然后到处moudle.name,在将导出的内容压栈b"S'os'\nS'system'\n\x93." => os.system
MEMOIZE = b'\x94' #将当前栈顶元素添加到缓存列表的末尾(注意栈顶不会弹出)
FRAME = b'\x95' #后面先是读取8字节数据通过unpack使用<Q格式将数据解压得到的结果作为大小,向后读取对应字节的数据,然后将读取到的数据进行正常pickle反序列化(感觉用不用这个操作没啥差别,但是细节差别的话看源码)
__all__.extend([x for x in dir() if re.match("[A-Z][A-Z0-9_]+$", x)])
class _Framer:
_FRAME_SIZE_MIN = 4
_FRAME_SIZE_TARGET = 64 * 1024
def __init__(self, file_write):
self.file_write = file_write
self.current_frame = None
def start_framing(self):
self.current_frame = io.BytesIO()
def end_framing(self):
if self.current_frame and self.current_frame.tell() > 0:
self.commit_frame(force=True)
self.current_frame = None
def commit_frame(self, force=False):
if self.current_frame:
f = self.current_frame
if f.tell() >= self._FRAME_SIZE_TARGET or force:
data = f.getbuffer()
write = self.file_write
if len(data) >= self._FRAME_SIZE_MIN:
# Issue a single call to the write method of the underlying
# file object for the frame opcode with the size of the
# frame. The concatenation is expected to be less expensive
# than issuing an additional call to write.
write(FRAME + pack("<Q", len(data)))
# Issue a separate call to write to append the frame
# contents without concatenation to the above to avoid a
# memory copy.
write(data)
# Start the new frame with a new io.BytesIO instance so that
# the file object can have delayed access to the previous frame
# contents via an unreleased memoryview of the previous
# io.BytesIO instance.
self.current_frame = io.BytesIO()
def write(self, data):
if self.current_frame:
return self.current_frame.write(data)
else:
return self.file_write(data)
def write_large_bytes(self, header, payload):
write = self.file_write
if self.current_frame:
# Terminate the current frame and flush it to the file.
self.commit_frame(force=True)
# Perform direct write of the header and payload of the large binary
# object. Be careful not to concatenate the header and the payload
# prior to calling 'write' as we do not want to allocate a large
# temporary bytes object.
# We intentionally do not insert a protocol 4 frame opcode to make
# it possible to optimize file.read calls in the loader.
write(header)
write(payload)
class _Unframer:
def __init__(self, file_read, file_readline, file_tell=None):
self.file_read = file_read
self.file_readline = file_readline
self.current_frame = None
def read(self, n):
if self.current_frame:
data = self.current_frame.read(n)
if not data and n != 0:
self.current_frame = None
return self.file_read(n)
if len(data) < n:
raise UnpicklingError(
"pickle exhausted before end of frame")
return data
else:
return self.file_read(n)
def readline(self):
if self.current_frame:
data = self.current_frame.readline()
if not data:
self.current_frame = None
return self.file_readline()
if data[-1] != b'\n'[0]:
raise UnpicklingError(
"pickle exhausted before end of frame")
return data
else:
return self.file_readline()
def load_frame(self, frame_size):
if self.current_frame and self.current_frame.read() != b'':
raise UnpicklingError(
"beginning of a new frame before end of current frame")
self.current_frame = io.BytesIO(self.file_read(frame_size))
# Tools used for pickling.
def _getattribute(obj, name):
for subpath in name.split('.'):
if subpath == '<locals>':
raise AttributeError("Can't get local attribute {!r} on {!r}"
.format(name, obj))
try:
parent = obj
obj = getattr(obj, subpath)
except AttributeError:
raise AttributeError("Can't get attribute {!r} on {!r}"
.format(name, obj)) from None
return obj, parent
def whichmodule(obj, name):
"""Find the module an object belong to."""
module_name = getattr(obj, '__module__', None)
if module_name is not None:
return module_name
# Protect the iteration by using a list copy of sys.modules against dynamic
# modules that trigger imports of other modules upon calls to getattr.
for module_name, module in list(sys.modules.items()):
if module_name == '__main__' or module is None:
continue
try:
if _getattribute(module, name)[0] is obj:
return module_name
except AttributeError:
pass
return '__main__'
def encode_long(x):
r"""Encode a long to a two's complement little-endian binary string.
Note that 0 is a special case, returning an empty string, to save a
byte in the LONG1 pickling context.
>>> encode_long(0)
b''
>>> encode_long(255)
b'\xff\x00'
>>> encode_long(32767)
b'\xff\x7f'
>>> encode_long(-256)
b'\x00\xff'
>>> encode_long(-32768)
b'\x00\x80'
>>> encode_long(-128)
b'\x80'
>>> encode_long(127)
b'\x7f'
>>>
"""
if x == 0:
return b''
nbytes = (x.bit_length() >> 3) + 1
result = x.to_bytes(nbytes, byteorder='little', signed=True)
if x < 0 and nbytes > 1:
if result[-1] == 0xff and (result[-2] & 0x80) != 0:
result = result[:-1]
return result
def decode_long(data):
r"""Decode a long from a two's complement little-endian binary string.
>>> decode_long(b'')
0
>>> decode_long(b"\xff\x00")
255
>>> decode_long(b"\xff\x7f")
32767
>>> decode_long(b"\x00\xff")
-256
>>> decode_long(b"\x00\x80")
-32768
>>> decode_long(b"\x80")
-128
>>> decode_long(b"\x7f")
127
"""
return int.from_bytes(data, byteorder='little', signed=True)
# Pickling machinery
class _Pickler:
def __init__(self, file, protocol=None, *, fix_imports=True):
"""This takes a binary file for writing a pickle data stream.
The optional *protocol* argument tells the pickler to use the
given protocol; supported protocols are 0, 1, 2, 3 and 4. The
default protocol is 3; a backward-incompatible protocol designed
for Python 3.
Specifying a negative protocol version selects the highest
protocol version supported. The higher the protocol used, the
more recent the version of Python needed to read the pickle
produced.
The *file* argument must have a write() method that accepts a
single bytes argument. It can thus be a file object opened for
binary writing, an io.BytesIO instance, or any other custom
object that meets this interface.
If *fix_imports* is True and *protocol* is less than 3, pickle
will try to map the new Python 3 names to the old module names
used in Python 2, so that the pickle data stream is readable
with Python 2.
"""
if protocol is None:
protocol = DEFAULT_PROTOCOL
if protocol < 0:
protocol = HIGHEST_PROTOCOL
elif not 0 <= protocol <= HIGHEST_PROTOCOL:
raise ValueError("pickle protocol must be <= %d" % HIGHEST_PROTOCOL)
try:
self._file_write = file.write
except AttributeError:
raise TypeError("file must have a 'write' attribute")
self.framer = _Framer(self._file_write)
self.write = self.framer.write
self._write_large_bytes = self.framer.write_large_bytes
self.memo = {}
self.proto = int(protocol)
self.bin = protocol >= 1
self.fast = 0
self.fix_imports = fix_imports and protocol < 3
def clear_memo(self):
"""Clears the pickler's "memo".
The memo is the data structure that remembers which objects the
pickler has already seen, so that shared or recursive objects
are pickled by reference and not by value. This method is
useful when re-using picklers.
"""
self.memo.clear()
def dump(self, obj):
"""Write a pickled representation of obj to the open file."""
# Check whether Pickler was initialized correctly. This is
# only needed to mimic the behavior of _pickle.Pickler.dump().
if not hasattr(self, "_file_write"):
raise PicklingError("Pickler.__init__() was not called by "
"%s.__init__()" % (self.__class__.__name__,))
if self.proto >= 2:
self.write(PROTO + pack("<B", self.proto))
if self.proto >= 4:
self.framer.start_framing()
self.save(obj)
self.write(STOP)
self.framer.end_framing()
def memoize(self, obj):
"""Store an object in the memo."""
# The Pickler memo is a dictionary mapping object ids to 2-tuples
# that contain the Unpickler memo key and the object being memoized.
# The memo key is written to the pickle and will become
# the key in the Unpickler's memo. The object is stored in the
# Pickler memo so that transient objects are kept alive during
# pickling.
# The use of the Unpickler memo length as the memo key is just a
# convention. The only requirement is that the memo values be unique.
# But there appears no advantage to any other scheme, and this
# scheme allows the Unpickler memo to be implemented as a plain (but
# growable) array, indexed by memo key.
if self.fast:
return
assert id(obj) not in self.memo
idx = len(self.memo)
self.write(self.put(idx))
self.memo[id(obj)] = idx, obj
# Return a PUT (BINPUT, LONG_BINPUT) opcode string, with argument i.
def put(self, idx):
if self.proto >= 4:
return MEMOIZE
elif self.bin:
if idx < 256:
return BINPUT + pack("<B", idx)
else:
return LONG_BINPUT + pack("<I", idx)
else:
return PUT + repr(idx).encode("ascii") + b'\n'
# Return a GET (BINGET, LONG_BINGET) opcode string, with argument i.
def get(self, i):
if self.bin:
if i < 256:
return BINGET + pack("<B", i)
else:
return LONG_BINGET + pack("<I", i)
return GET + repr(i).encode("ascii") + b'\n'
def save(self, obj, save_persistent_id=True):
self.framer.commit_frame()
# Check for persistent id (defined by a subclass)
pid = self.persistent_id(obj)
if pid is not None and save_persistent_id:
self.save_pers(pid)
return
# Check the memo
x = self.memo.get(id(obj))
if x is not None:
self.write(self.get(x[0]))
return
# Check the type dispatch table
t = type(obj)
f = self.dispatch.get(t)
if f is not None:
f(self, obj) # Call unbound method with explicit self
return
# Check private dispatch table if any, or else copyreg.dispatch_table
reduce = getattr(self, 'dispatch_table', dispatch_table).get(t)
if reduce is not None:
rv = reduce(obj)
else:
# Check for a class with a custom metaclass; treat as regular class
try:
issc = issubclass(t, type)
except TypeError: # t is not a class (old Boost; see SF #502085)
issc = False
if issc:
self.save_global(obj)
return
# Check for a __reduce_ex__ method, fall back to __reduce__
reduce = getattr(obj, "__reduce_ex__", None)
if reduce is not None:
rv = reduce(self.proto)
else:
reduce = getattr(obj, "__reduce__", None)
if reduce is not None:
rv = reduce()
else:
raise PicklingError("Can't pickle %r object: %r" %
(t.__name__, obj))
# Check for string returned by reduce(), meaning "save as global"
if isinstance(rv, str):
self.save_global(obj, rv)
return
# Assert that reduce() returned a tuple
if not isinstance(rv, tuple):
raise PicklingError("%s must return string or tuple" % reduce)
# Assert that it returned an appropriately sized tuple
l = len(rv)
if not (2 <= l <= 5):
raise PicklingError("Tuple returned by %s must have "
"two to five elements" % reduce)
# Save the reduce() output and finally memoize the object
self.save_reduce(obj=obj, *rv)
def persistent_id(self, obj):
# This exists so a subclass can override it
return None
def save_pers(self, pid):
# Save a persistent id reference
if self.bin:
self.save(pid, save_persistent_id=False)
self.write(BINPERSID)
else:
try:
self.write(PERSID + str(pid).encode("ascii") + b'\n')
except UnicodeEncodeError:
raise PicklingError(
"persistent IDs in protocol 0 must be ASCII strings")
def save_reduce(self, func, args, state=None, listitems=None,
dictitems=None, obj=None):
# This API is called by some subclasses
if not isinstance(args, tuple):
raise PicklingError("args from save_reduce() must be a tuple")
if not callable(func):
raise PicklingError("func from save_reduce() must be callable")
save = self.save
write = self.write
func_name = getattr(func, "__name__", "")
if self.proto >= 2 and func_name == "__newobj_ex__":
cls, args, kwargs = args
if not hasattr(cls, "__new__"):
raise PicklingError("args[0] from {} args has no __new__"
.format(func_name))
if obj is not None and cls is not obj.__class__:
raise PicklingError("args[0] from {} args has the wrong class"
.format(func_name))
if self.proto >= 4:
save(cls)
save(args)
save(kwargs)
write(NEWOBJ_EX)
else:
func = partial(cls.__new__, cls, *args, **kwargs)
save(func)
save(())
write(REDUCE)
elif self.proto >= 2 and func_name == "__newobj__":
# A __reduce__ implementation can direct protocol 2 or newer to
# use the more efficient NEWOBJ opcode, while still
# allowing protocol 0 and 1 to work normally. For this to
# work, the function returned by __reduce__ should be
# called __newobj__, and its first argument should be a
# class. The implementation for __newobj__
# should be as follows, although pickle has no way to
# verify this:
#
# def __newobj__(cls, *args):
# return cls.__new__(cls, *args)
#
# Protocols 0 and 1 will pickle a reference to __newobj__,
# while protocol 2 (and above) will pickle a reference to
# cls, the remaining args tuple, and the NEWOBJ code,
# which calls cls.__new__(cls, *args) at unpickling time
# (see load_newobj below). If __reduce__ returns a
# three-tuple, the state from the third tuple item will be
# pickled regardless of the protocol, calling __setstate__
# at unpickling time (see load_build below).
#
# Note that no standard __newobj__ implementation exists;
# you have to provide your own. This is to enforce
# compatibility with Python 2.2 (pickles written using
# protocol 0 or 1 in Python 2.3 should be unpicklable by
# Python 2.2).
cls = args[0]
if not hasattr(cls, "__new__"):
raise PicklingError(
"args[0] from __newobj__ args has no __new__")
if obj is not None and cls is not obj.__class__:
raise PicklingError(
"args[0] from __newobj__ args has the wrong class")
args = args[1:]
save(cls)
save(args)
write(NEWOBJ)
else:
save(func)
save(args)
write(REDUCE)
if obj is not None:
# If the object is already in the memo, this means it is
# recursive. In this case, throw away everything we put on the
# stack, and fetch the object back from the memo.
if id(obj) in self.memo:
write(POP + self.get(self.memo[id(obj)][0]))
else:
self.memoize(obj)
# More new special cases (that work with older protocols as
# well): when __reduce__ returns a tuple with 4 or 5 items,
# the 4th and 5th item should be iterators that provide list
# items and dict items (as (key, value) tuples), or None.
if listitems is not None:
self._batch_appends(listitems)
if dictitems is not None:
self._batch_setitems(dictitems)
if state is not None:
save(state)
write(BUILD)
# Methods below this point are dispatched through the dispatch table
dispatch = {}
def save_none(self, obj):
self.write(NONE)
dispatch[type(None)] = save_none
def save_bool(self, obj):
if self.proto >= 2:
self.write(NEWTRUE if obj else NEWFALSE)
else:
self.write(TRUE if obj else FALSE)
dispatch[bool] = save_bool
def save_long(self, obj):
if self.bin:
# If the int is small enough to fit in a signed 4-byte 2's-comp
# format, we can store it more efficiently than the general
# case.
# First one- and two-byte unsigned ints:
if obj >= 0:
if obj <= 0xff:
self.write(BININT1 + pack("<B", obj))
return
if obj <= 0xffff:
self.write(BININT2 + pack("<H", obj))
return
# Next check for 4-byte signed ints:
if -0x80000000 <= obj <= 0x7fffffff:
self.write(BININT + pack("<i", obj))
return
if self.proto >= 2:
encoded = encode_long(obj)
n = len(encoded)
if n < 256:
self.write(LONG1 + pack("<B", n) + encoded)
else:
self.write(LONG4 + pack("<i", n) + encoded)
return
if -0x80000000 <= obj <= 0x7fffffff:
self.write(INT + repr(obj).encode("ascii") + b'\n')
else:
self.write(LONG + repr(obj).encode("ascii") + b'L\n')
dispatch[int] = save_long
def save_float(self, obj):
if self.bin:
self.write(BINFLOAT + pack('>d', obj))
else:
self.write(FLOAT + repr(obj).encode("ascii") + b'\n')
dispatch[float] = save_float
def save_bytes(self, obj):
if self.proto < 3:
if not obj: # bytes object is empty
self.save_reduce(bytes, (), obj=obj)
else:
self.save_reduce(codecs.encode,
(str(obj, 'latin1'), 'latin1'), obj=obj)
return
n = len(obj)
if n <= 0xff:
self.write(SHORT_BINBYTES + pack("<B", n) + obj)
elif n > 0xffffffff and self.proto >= 4:
self._write_large_bytes(BINBYTES8 + pack("<Q", n), obj)
elif n >= self.framer._FRAME_SIZE_TARGET:
self._write_large_bytes(BINBYTES + pack("<I", n), obj)
else:
self.write(BINBYTES + pack("<I", n) + obj)
self.memoize(obj)
dispatch[bytes] = save_bytes
def save_str(self, obj):
if self.bin:
encoded = obj.encode('utf-8', 'surrogatepass')
n = len(encoded)
if n <= 0xff and self.proto >= 4:
self.write(SHORT_BINUNICODE + pack("<B", n) + encoded)
elif n > 0xffffffff and self.proto >= 4:
self._write_large_bytes(BINUNICODE8 + pack("<Q", n), encoded)
elif n >= self.framer._FRAME_SIZE_TARGET:
self._write_large_bytes(BINUNICODE + pack("<I", n), encoded)
else:
self.write(BINUNICODE + pack("<I", n) + encoded)
else:
obj = obj.replace("\\", "\\u005c")
obj = obj.replace("\0", "\\u0000")
obj = obj.replace("\n", "\\u000a")
obj = obj.replace("\r", "\\u000d")
obj = obj.replace("\x1a", "\\u001a") # EOF on DOS
self.write(UNICODE + obj.encode('raw-unicode-escape') +
b'\n')
self.memoize(obj)
dispatch[str] = save_str
def save_tuple(self, obj):
if not obj: # tuple is empty
if self.bin:
self.write(EMPTY_TUPLE)
else:
self.write(MARK + TUPLE)
return
n = len(obj)
save = self.save
memo = self.memo
if n <= 3 and self.proto >= 2:
for element in obj:
save(element)
# Subtle. Same as in the big comment below.
if id(obj) in memo:
get = self.get(memo[id(obj)][0])
self.write(POP * n + get)
else:
self.write(_tuplesize2code[n])
self.memoize(obj)
return
# proto 0 or proto 1 and tuple isn't empty, or proto > 1 and tuple
# has more than 3 elements.
write = self.write
write(MARK)
for element in obj:
save(element)
if id(obj) in memo:
# Subtle. d was not in memo when we entered save_tuple(), so
# the process of saving the tuple's elements must have saved
# the tuple itself: the tuple is recursive. The proper action
# now is to throw away everything we put on the stack, and
# simply GET the tuple (it's already constructed). This check
# could have been done in the "for element" loop instead, but
# recursive tuples are a rare thing.
get = self.get(memo[id(obj)][0])
if self.bin:
write(POP_MARK + get)
else: # proto 0 -- POP_MARK not available
write(POP * (n+1) + get)
return
# No recursion.
write(TUPLE)
self.memoize(obj)
dispatch[tuple] = save_tuple
def save_list(self, obj):
if self.bin:
self.write(EMPTY_LIST)
else: # proto 0 -- can't use EMPTY_LIST
self.write(MARK + LIST)
self.memoize(obj)
self._batch_appends(obj)
dispatch[list] = save_list
_BATCHSIZE = 1000
def _batch_appends(self, items):
# Helper to batch up APPENDS sequences
save = self.save
write = self.write
if not self.bin:
for x in items:
save(x)
write(APPEND)
return
it = iter(items)
while True:
tmp = list(islice(it, self._BATCHSIZE))
n = len(tmp)
if n > 1:
write(MARK)
for x in tmp:
save(x)
write(APPENDS)
elif n:
save(tmp[0])
write(APPEND)
# else tmp is empty, and we're done
if n < self._BATCHSIZE:
return
def save_dict(self, obj):
if self.bin:
self.write(EMPTY_DICT)
else: # proto 0 -- can't use EMPTY_DICT
self.write(MARK + DICT)
self.memoize(obj)
self._batch_setitems(obj.items())
dispatch[dict] = save_dict
if PyStringMap is not None:
dispatch[PyStringMap] = save_dict
def _batch_setitems(self, items):
# Helper to batch up SETITEMS sequences; proto >= 1 only
save = self.save
write = self.write
if not self.bin:
for k, v in items:
save(k)
save(v)
write(SETITEM)
return
it = iter(items)
while True:
tmp = list(islice(it, self._BATCHSIZE))
n = len(tmp)
if n > 1:
write(MARK)
for k, v in tmp:
save(k)
save(v)
write(SETITEMS)
elif n:
k, v = tmp[0]
save(k)
save(v)
write(SETITEM)
# else tmp is empty, and we're done
if n < self._BATCHSIZE:
return
def save_set(self, obj):
save = self.save
write = self.write
if self.proto < 4:
self.save_reduce(set, (list(obj),), obj=obj)
return
write(EMPTY_SET)
self.memoize(obj)
it = iter(obj)
while True:
batch = list(islice(it, self._BATCHSIZE))
n = len(batch)
if n > 0:
write(MARK)
for item in batch:
save(item)
write(ADDITEMS)
if n < self._BATCHSIZE:
return
dispatch[set] = save_set
def save_frozenset(self, obj):
save = self.save
write = self.write
if self.proto < 4:
self.save_reduce(frozenset, (list(obj),), obj=obj)
return
write(MARK)
for item in obj:
save(item)
if id(obj) in self.memo:
# If the object is already in the memo, this means it is
# recursive. In this case, throw away everything we put on the
# stack, and fetch the object back from the memo.
write(POP_MARK + self.get(self.memo[id(obj)][0]))
return
write(FROZENSET)
self.memoize(obj)
dispatch[frozenset] = save_frozenset
def save_global(self, obj, name=None):
write = self.write
memo = self.memo
if name is None:
name = getattr(obj, '__qualname__', None)
if name is None:
name = obj.__name__
module_name = whichmodule(obj, name)
try:
__import__(module_name, level=0)
module = sys.modules[module_name]
obj2, parent = _getattribute(module, name)
except (ImportError, KeyError, AttributeError):
raise PicklingError(
"Can't pickle %r: it's not found as %s.%s" %
(obj, module_name, name)) from None
else:
if obj2 is not obj:
raise PicklingError(
"Can't pickle %r: it's not the same object as %s.%s" %
(obj, module_name, name))
if self.proto >= 2:
code = _extension_registry.get((module_name, name))
if code:
assert code > 0
if code <= 0xff:
write(EXT1 + pack("<B", code))
elif code <= 0xffff:
write(EXT2 + pack("<H", code))
else:
write(EXT4 + pack("<i", code))
return
lastname = name.rpartition('.')[2]
if parent is module:
name = lastname
# Non-ASCII identifiers are supported only with protocols >= 3.
if self.proto >= 4:
self.save(module_name)
self.save(name)
write(STACK_GLOBAL)
elif parent is not module:
self.save_reduce(getattr, (parent, lastname))
elif self.proto >= 3:
write(GLOBAL + bytes(module_name, "utf-8") + b'\n' +
bytes(name, "utf-8") + b'\n')
else:
if self.fix_imports:
r_name_mapping = _compat_pickle.REVERSE_NAME_MAPPING
r_import_mapping = _compat_pickle.REVERSE_IMPORT_MAPPING
if (module_name, name) in r_name_mapping:
module_name, name = r_name_mapping[(module_name, name)]
elif module_name in r_import_mapping:
module_name = r_import_mapping[module_name]
try:
write(GLOBAL + bytes(module_name, "ascii") + b'\n' +
bytes(name, "ascii") + b'\n')
except UnicodeEncodeError:
raise PicklingError(
"can't pickle global identifier '%s.%s' using "
"pickle protocol %i" % (module, name, self.proto)) from None
self.memoize(obj)
def save_type(self, obj):
if obj is type(None):
return self.save_reduce(type, (None,), obj=obj)
elif obj is type(NotImplemented):
return self.save_reduce(type, (NotImplemented,), obj=obj)
elif obj is type(...):
return self.save_reduce(type, (...,), obj=obj)
return self.save_global(obj)
dispatch[FunctionType] = save_global
dispatch[type] = save_type
# Unpickling machinery
class _Unpickler:
def __init__(self, file, *, fix_imports=True,
encoding="ASCII", errors="strict"):
"""This takes a binary file for reading a pickle data stream.
The protocol version of the pickle is detected automatically, so
no proto argument is needed.
The argument *file* must have two methods, a read() method that
takes an integer argument, and a readline() method that requires
no arguments. Both methods should return bytes. Thus *file*
can be a binary file object opened for reading, an io.BytesIO
object, or any other custom object that meets this interface.
The file-like object must have two methods, a read() method
that takes an integer argument, and a readline() method that
requires no arguments. Both methods should return bytes.
Thus file-like object can be a binary file object opened for
reading, a BytesIO object, or any other custom object that
meets this interface.
Optional keyword arguments are *fix_imports*, *encoding* and
*errors*, which are used to control compatibility support for
pickle stream generated by Python 2. If *fix_imports* is True,
pickle will try to map the old Python 2 names to the new names
used in Python 3. The *encoding* and *errors* tell pickle how
to decode 8-bit string instances pickled by Python 2; these
default to 'ASCII' and 'strict', respectively. *encoding* can be
'bytes' to read theses 8-bit string instances as bytes objects.
"""
self._file_readline = file.readline
self._file_read = file.read
self.memo = {}
self.encoding = encoding
self.errors = errors
self.proto = 0
self.fix_imports = fix_imports
def load(self):
"""Read a pickled object representation from the open file.
Return the reconstituted object hierarchy specified in the file.
"""
# Check whether Unpickler was initialized correctly. This is
# only needed to mimic the behavior of _pickle.Unpickler.dump().
if not hasattr(self, "_file_read"):
raise UnpicklingError("Unpickler.__init__() was not called by "
"%s.__init__()" % (self.__class__.__name__,))
self._unframer = _Unframer(self._file_read, self._file_readline)
self.read = self._unframer.read
self.readline = self._unframer.readline
self.metastack = []
self.stack = []
self.append = self.stack.append
self.proto = 0
read = self.read
dispatch = self.dispatch
try:
while True:
key = read(1)
if not key:
raise EOFError
assert isinstance(key, bytes_types)
dispatch[key[0]](self)
except _Stop as stopinst:
return stopinst.value
# Return a list of items pushed in the stack after last MARK instruction.
def pop_mark(self):
items = self.stack
self.stack = self.metastack.pop()
self.append = self.stack.append
return items
def persistent_load(self, pid):
raise UnpicklingError("unsupported persistent id encountered")
dispatch = {}
def load_proto(self):
proto = self.read(1)[0]
if not 0 <= proto <= HIGHEST_PROTOCOL:
raise ValueError("unsupported pickle protocol: %d" % proto)
self.proto = proto
dispatch[PROTO[0]] = load_proto
def load_frame(self):
frame_size, = unpack('<Q', self.read(8))
if frame_size > sys.maxsize:
raise ValueError("frame size > sys.maxsize: %d" % frame_size)
self._unframer.load_frame(frame_size)
dispatch[FRAME[0]] = load_frame
def load_persid(self):
try:
pid = self.readline()[:-1].decode("ascii")
except UnicodeDecodeError:
raise UnpicklingError(
"persistent IDs in protocol 0 must be ASCII strings")
self.append(self.persistent_load(pid))
dispatch[PERSID[0]] = load_persid
def load_binpersid(self):
pid = self.stack.pop()
self.append(self.persistent_load(pid))
dispatch[BINPERSID[0]] = load_binpersid
def load_none(self):
self.append(None)
dispatch[NONE[0]] = load_none
def load_false(self):
self.append(False)
dispatch[NEWFALSE[0]] = load_false
def load_true(self):
self.append(True)
dispatch[NEWTRUE[0]] = load_true
def load_int(self):
data = self.readline()
if data == FALSE[1:]:
val = False
elif data == TRUE[1:]:
val = True
else:
val = int(data, 0)
self.append(val)
dispatch[INT[0]] = load_int
def load_binint(self):
self.append(unpack('<i', self.read(4))[0])
dispatch[BININT[0]] = load_binint
def load_binint1(self):
self.append(self.read(1)[0])
dispatch[BININT1[0]] = load_binint1
def load_binint2(self):
self.append(unpack('<H', self.read(2))[0])
dispatch[BININT2[0]] = load_binint2
def load_long(self):
val = self.readline()[:-1]
if val and val[-1] == b'L'[0]:
val = val[:-1]
self.append(int(val, 0))
dispatch[LONG[0]] = load_long
def load_long1(self):
n = self.read(1)[0]
data = self.read(n)
self.append(decode_long(data))
dispatch[LONG1[0]] = load_long1
def load_long4(self):
n, = unpack('<i', self.read(4))
if n < 0:
# Corrupt or hostile pickle -- we never write one like this
raise UnpicklingError("LONG pickle has negative byte count")
data = self.read(n)
self.append(decode_long(data))
dispatch[LONG4[0]] = load_long4
def load_float(self):
self.append(float(self.readline()[:-1]))
dispatch[FLOAT[0]] = load_float
def load_binfloat(self):
self.append(unpack('>d', self.read(8))[0])
dispatch[BINFLOAT[0]] = load_binfloat
def _decode_string(self, value):
# Used to allow strings from Python 2 to be decoded either as
# bytes or Unicode strings. This should be used only with the
# STRING, BINSTRING and SHORT_BINSTRING opcodes.
if self.encoding == "bytes":
return value
else:
return value.decode(self.encoding, self.errors)
def load_string(self):
data = self.readline()[:-1]
# Strip outermost quotes
print(data)
if len(data) >= 2 and data[0] == data[-1] and data[0] in b'"\'':
data = data[1:-1]
else:
raise UnpicklingError("the STRING opcode argument must be quoted")
self.append(self._decode_string(codecs.escape_decode(data)[0]))
dispatch[STRING[0]] = load_string
def load_binstring(self):
# Deprecated BINSTRING uses signed 32-bit length
len, = unpack('<i', self.read(4))
if len < 0:
raise UnpicklingError("BINSTRING pickle has negative byte count")
data = self.read(len)
self.append(self._decode_string(data))
dispatch[BINSTRING[0]] = load_binstring
def load_binbytes(self):
len, = unpack('<I', self.read(4))
if len > maxsize:
raise UnpicklingError("BINBYTES exceeds system's maximum size "
"of %d bytes" % maxsize)
self.append(self.read(len))
dispatch[BINBYTES[0]] = load_binbytes
def load_unicode(self):
self.append(str(self.readline()[:-1], 'raw-unicode-escape'))
dispatch[UNICODE[0]] = load_unicode
def load_binunicode(self):
len, = unpack('<I', self.read(4))
if len > maxsize:
raise UnpicklingError("BINUNICODE exceeds system's maximum size "
"of %d bytes" % maxsize)
self.append(str(self.read(len), 'utf-8', 'surrogatepass'))
dispatch[BINUNICODE[0]] = load_binunicode
def load_binunicode8(self):
len, = unpack('<Q', self.read(8))
if len > maxsize:
raise UnpicklingError("BINUNICODE8 exceeds system's maximum size "
"of %d bytes" % maxsize)
self.append(str(self.read(len), 'utf-8', 'surrogatepass'))
dispatch[BINUNICODE8[0]] = load_binunicode8
def load_binbytes8(self):
len, = unpack('<Q', self.read(8))
if len > maxsize:
raise UnpicklingError("BINBYTES8 exceeds system's maximum size "
"of %d bytes" % maxsize)
self.append(self.read(len))
dispatch[BINBYTES8[0]] = load_binbytes8
def load_short_binstring(self):
len = self.read(1)[0]
data = self.read(len)
self.append(self._decode_string(data))
dispatch[SHORT_BINSTRING[0]] = load_short_binstring
def load_short_binbytes(self):
len = self.read(1)[0]
self.append(self.read(len))
dispatch[SHORT_BINBYTES[0]] = load_short_binbytes
def load_short_binunicode(self):
len = self.read(1)[0]
self.append(str(self.read(len), 'utf-8', 'surrogatepass'))
dispatch[SHORT_BINUNICODE[0]] = load_short_binunicode
def load_tuple(self):
items = self.pop_mark()
self.append(tuple(items))
dispatch[TUPLE[0]] = load_tuple
def load_empty_tuple(self):
self.append(())
dispatch[EMPTY_TUPLE[0]] = load_empty_tuple
def load_tuple1(self):
self.stack[-1] = (self.stack[-1],)
dispatch[TUPLE1[0]] = load_tuple1
def load_tuple2(self):
self.stack[-2:] = [(self.stack[-2], self.stack[-1])]
dispatch[TUPLE2[0]] = load_tuple2
def load_tuple3(self):
self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])]
dispatch[TUPLE3[0]] = load_tuple3
def load_empty_list(self):
self.append([])
dispatch[EMPTY_LIST[0]] = load_empty_list
def load_empty_dictionary(self):
self.append({})
dispatch[EMPTY_DICT[0]] = load_empty_dictionary
def load_empty_set(self):
self.append(set())
dispatch[EMPTY_SET[0]] = load_empty_set
def load_frozenset(self):
items = self.pop_mark()
self.append(frozenset(items))
dispatch[FROZENSET[0]] = load_frozenset
def load_list(self):
items = self.pop_mark()
self.append(items)
dispatch[LIST[0]] = load_list
def load_dict(self):
items = self.pop_mark()
d = {items[i]: items[i+1]
for i in range(0, len(items), 2)}
self.append(d)
dispatch[DICT[0]] = load_dict
# INST and OBJ differ only in how they get a class object. It's not
# only sensible to do the rest in a common routine, the two routines
# previously diverged and grew different bugs.
# klass is the class to instantiate, and k points to the topmost mark
# object, following which are the arguments for klass.__init__.
def _instantiate(self, klass, args):
if (args or not isinstance(klass, type) or
hasattr(klass, "__getinitargs__")):
try:
value = klass(*args)
except TypeError as err:
raise TypeError("in constructor for %s: %s" %
(klass.__name__, str(err)), sys.exc_info()[2])
else:
value = klass.__new__(klass)
self.append(value)
def load_inst(self):
module = self.readline()[:-1].decode("ascii")
name = self.readline()[:-1].decode("ascii")
klass = self.find_class(module, name)
self._instantiate(klass, self.pop_mark())
dispatch[INST[0]] = load_inst
def load_obj(self):
# Stack is ... markobject classobject arg1 arg2 ...
args = self.pop_mark()
cls = args.pop(0)
self._instantiate(cls, args)
dispatch[OBJ[0]] = load_obj
def load_newobj(self):
args = self.stack.pop()
cls = self.stack.pop()
obj = cls.__new__(cls, *args)
self.append(obj)
dispatch[NEWOBJ[0]] = load_newobj
def load_newobj_ex(self):
kwargs = self.stack.pop()
args = self.stack.pop()
cls = self.stack.pop()
obj = cls.__new__(cls, *args, **kwargs)
self.append(obj)
dispatch[NEWOBJ_EX[0]] = load_newobj_ex
def load_global(self):
module = self.readline()[:-1].decode("utf-8")
name = self.readline()[:-1].decode("utf-8")
klass = self.find_class(module, name)
self.append(klass)
dispatch[GLOBAL[0]] = load_global
def load_stack_global(self):
name = self.stack.pop()
module = self.stack.pop()
if type(name) is not str or type(module) is not str:
raise UnpicklingError("STACK_GLOBAL requires str")
self.append(self.find_class(module, name))
dispatch[STACK_GLOBAL[0]] = load_stack_global
def load_ext1(self):
code = self.read(1)[0]
self.get_extension(code)
dispatch[EXT1[0]] = load_ext1
def load_ext2(self):
code, = unpack('<H', self.read(2))
self.get_extension(code)
dispatch[EXT2[0]] = load_ext2
def load_ext4(self):
code, = unpack('<i', self.read(4))
self.get_extension(code)
dispatch[EXT4[0]] = load_ext4
def get_extension(self, code):
nil = []
obj = _extension_cache.get(code, nil)
if obj is not nil:
self.append(obj)
return
key = _inverted_registry.get(code)
if not key:
if code <= 0: # note that 0 is forbidden
# Corrupt or hostile pickle.
raise UnpicklingError("EXT specifies code <= 0")
raise ValueError("unregistered extension code %d" % code)
obj = self.find_class(*key)
_extension_cache[code] = obj
self.append(obj)
def find_class(self, module, name):
# Subclasses may override this.
if self.proto < 3 and self.fix_imports:
if (module, name) in _compat_pickle.NAME_MAPPING:
module, name = _compat_pickle.NAME_MAPPING[(module, name)]
elif module in _compat_pickle.IMPORT_MAPPING:
module = _compat_pickle.IMPORT_MAPPING[module]
__import__(module, level=0)
if self.proto >= 4:
return _getattribute(sys.modules[module], name)[0]
else:
return getattr(sys.modules[module], name)
def load_reduce(self):
stack = self.stack
args = stack.pop()
func = stack[-1]
stack[-1] = func(*args)
dispatch[REDUCE[0]] = load_reduce
def load_pop(self):
if self.stack:
del self.stack[-1]
else:
self.pop_mark()
dispatch[POP[0]] = load_pop
def load_pop_mark(self):
self.pop_mark()
dispatch[POP_MARK[0]] = load_pop_mark
def load_dup(self):
self.append(self.stack[-1])
dispatch[DUP[0]] = load_dup
def load_get(self):
i = int(self.readline()[:-1])
self.append(self.memo[i])
dispatch[GET[0]] = load_get
def load_binget(self):
i = self.read(1)[0]
self.append(self.memo[i])
dispatch[BINGET[0]] = load_binget
def load_long_binget(self):
i, = unpack('<I', self.read(4))
self.append(self.memo[i])
dispatch[LONG_BINGET[0]] = load_long_binget
def load_put(self):
i = int(self.readline()[:-1])
if i < 0:
raise ValueError("negative PUT argument")
self.memo[i] = self.stack[-1]
dispatch[PUT[0]] = load_put
def load_binput(self):
i = self.read(1)[0]
if i < 0:
raise ValueError("negative BINPUT argument")
self.memo[i] = self.stack[-1]
dispatch[BINPUT[0]] = load_binput
def load_long_binput(self):
i, = unpack('<I', self.read(4))
if i > maxsize:
raise ValueError("negative LONG_BINPUT argument")
self.memo[i] = self.stack[-1]
dispatch[LONG_BINPUT[0]] = load_long_binput
def load_memoize(self):
memo = self.memo
memo[len(memo)] = self.stack[-1]
dispatch[MEMOIZE[0]] = load_memoize
def load_append(self):
stack = self.stack
value = stack.pop()
list = stack[-1]
list.append(value)
dispatch[APPEND[0]] = load_append
def load_appends(self):
items = self.pop_mark()
list_obj = self.stack[-1]
try:
extend = list_obj.extend
except AttributeError:
pass
else:
extend(items)
return
# Even if the PEP 307 requires extend() and append() methods,
# fall back on append() if the object has no extend() method
# for backward compatibility.
append = list_obj.append
for item in items:
append(item)
dispatch[APPENDS[0]] = load_appends
def load_setitem(self):
stack = self.stack
value = stack.pop()
key = stack.pop()
dict = stack[-1]
dict[key] = value
dispatch[SETITEM[0]] = load_setitem
def load_setitems(self):
items = self.pop_mark()
dict = self.stack[-1]
for i in range(0, len(items), 2):
dict[items[i]] = items[i + 1]
dispatch[SETITEMS[0]] = load_setitems
def load_additems(self):
items = self.pop_mark()
set_obj = self.stack[-1]
if isinstance(set_obj, set):
set_obj.update(items)
else:
add = set_obj.add
for item in items:
add(item)
dispatch[ADDITEMS[0]] = load_additems
def load_build(self):
stack = self.stack
state = stack.pop()
inst = stack[-1]
setstate = getattr(inst, "__setstate__", None)
if setstate is not None:
setstate(state)
return
slotstate = None
if isinstance(state, tuple) and len(state) == 2:
state, slotstate = state
if state:
inst_dict = inst.__dict__
intern = sys.intern
for k, v in state.items():
if type(k) is str:
inst_dict[intern(k)] = v
else:
inst_dict[k] = v
if slotstate:
for k, v in slotstate.items():
setattr(inst, k, v)
dispatch[BUILD[0]] = load_build
def load_mark(self):
self.metastack.append(self.stack)
self.stack = []
self.append = self.stack.append
dispatch[MARK[0]] = load_mark
def load_stop(self):
value = self.stack.pop()
raise _Stop(value)
dispatch[STOP[0]] = load_stop
# Shorthands
def _dump(obj, file, protocol=None, *, fix_imports=True):
_Pickler(file, protocol, fix_imports=fix_imports).dump(obj)
def _dumps(obj, protocol=None, *, fix_imports=True):
f = io.BytesIO()
_Pickler(f, protocol, fix_imports=fix_imports).dump(obj)
res = f.getvalue()
assert isinstance(res, bytes_types)
return res
def _load(file, *, fix_imports=True, encoding="ASCII", errors="strict"):
return _Unpickler(file, fix_imports=fix_imports,
encoding=encoding, errors=errors).load()
def _loads(s, *, fix_imports=True, encoding="ASCII", errors="strict"):
if isinstance(s, str):
raise TypeError("Can't load pickle from unicode string")
file = io.BytesIO(s)
return _Unpickler(file, fix_imports=fix_imports,
encoding=encoding, errors=errors).load()
# Use the faster _pickle if possible
try:
from _pickle import (
PickleError,
PicklingError,
UnpicklingError,
Pickler,
Unpickler,
dump,
dumps,
load,
loads
)
except ImportError:
Pickler, Unpickler = _Pickler, _Unpickler
dump, dumps, load, loads = _dump, _dumps, _load, _loads
# Doctest
def _test():
import doctest
return doctest.testmod()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description='display contents of the pickle files')
parser.add_argument(
'pickle_file', type=argparse.FileType('br'),
nargs='*', help='the pickle file')
parser.add_argument(
'-t', '--test', action='store_true',
help='run self-test suite')
parser.add_argument(
'-v', action='store_true',
help='run verbosely; only affects self-test run')
args = parser.parse_args()
if args.test:
_test()
else:
if not args.pickle_file:
parser.print_help()
else:
import ppri