你是产品经理,目前正在带领一个团队开发新的产品。不幸的是,你的产品的最新版本没有通过质量检测。由于每个版本都是基于之前的版本开发的,所以错误的版本之后的所有版本都是错的。
假设你有 n 个版本 [1, 2, ..., n]
,你想找出导致之后所有版本出错的第一个错误的版本。
你可以通过调用 bool isBadVersion(version)
接口来判断版本号 version 是否在单元测试中出错。实现一个函数来查找第一个错误的版本。你应该尽量减少对调用 API 的次数。
示例 1:
输入:n = 5, bad = 4
输出:4
解释:
调用 isBadVersion(3) -> false
调用 isBadVersion(5) -> true
调用 isBadVersion(4) -> true
所以,4 是第一个错误的版本。
示例 2:
输入:n = 1, bad = 1
输出:1
提示:
1 <= bad <= n <= 231 - 1
因为题目要求尽量减少调用检查接口的次数,所以不能对每个版本都调用检查接口,而是应该将调用检查接口的次数降到最低。
注意到一个性质:当一个版本为正确版本,则该版本之前的所有版本均为正确版本;当一个版本为错误版本,则该版本之后的所有版本均为错误版本。我们可以利用这个性质进行二分查找。
具体地,将左右边界分别初始化为 1 和 n,其中 n 是给定的版本数量。设定左右边界之后,每次我们都依据左右边界找到其中间的版本,检查其是否为正确版本。如果该版本为正确版本,那么第一个错误的版本必然位于该版本的右侧,我们缩紧左边界;否则第一个错误的版本必然位于该版本及该版本的左侧,我们缩紧右边界。
这样我们每判断一次都可以缩紧一次边界,而每次缩紧时两边界距离将变为原来的一半,因此我们至多只需要缩紧 O(logn) 次。
/* The isBadVersion API is defined in the parent class VersionControl.
boolean isBadVersion(int version); */
public class Solution extends VersionControl {
public int firstBadVersion(int n) {
if (n == 1) return n;
int l = 1;
int r = n;
while(l < r) {
int m = l + ((r - l) >> 1);
if (isBadVersion(m)) {
r = m;
} else {
l = m + 1;
}
}
return l;
}
}
复杂度分析
时间复杂度: O(logn),其中 n 是给定版本的数量。 空间复杂度: O(1)。我们只需要常数的空间保存若干变量。