前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >PyTorch: nn网络层-卷积层

PyTorch: nn网络层-卷积层

作者头像
timerring
发布于 2023-07-20 11:35:34
发布于 2023-07-20 11:35:34
43900
代码可运行
举报
文章被收录于专栏:TechBlogTechBlog
运行总次数:0
代码可运行

文章和代码已经归档至【Github仓库:https://github.com/timerring/dive-into-AI 】或者公众号【AIShareLab】回复 pytorch教程 也可获取。

文章目录

nn网络层-卷积层

1D/2D/3D 卷积

卷积有一维卷积、二维卷积、三维卷积。一般情况下,卷积核在几个维度上滑动,就是几维卷积。比如在图片上的卷积就是二维卷积。

一维卷积

二维卷积

三维卷积

二维卷积:nn.Conv2d()

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
nn.Conv2d(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1,
                 bias=True, padding_mode='zeros')

这个函数的功能是对多个二维信号进行二维卷积,主要参数如下:

  • in_channels:输入通道数
  • out_channels:输出通道数,等价于卷积核个数
  • kernel_size:卷积核尺寸
  • stride:步长
  • padding:填充宽度,主要是为了调整输出的特征图大小,一般把 padding 设置合适的值后,保持输入和输出的图像尺寸不变。
  • dilation:空洞卷积大小,默认为 1,这时是标准卷积,常用于图像分割任务中,主要是为了提升感受野
  • groups:分组卷积设置,主要是为了模型的轻量化,如在 ShuffleNet、MobileNet、SqueezeNet 中用到
  • bias:偏置

卷积尺寸计算

简化版卷积尺寸计算

这里不考虑空洞卷积,假设输入图片大小为 I \times I,卷积核大小为 k × k k \times k k×k,stride 为 s s s,padding 的像素数为 p p p,图片经过卷积之后的尺寸 O 如下:

O = \displaystyle\frac{I -k + 2 \times p}{s} +1

下面例子的输入图片大小为

5 \times 5

,卷积大小为

3 \times 3

,stride 为 1,padding 为 0,所以输出图片大小为

\displaystyle\frac{5 -3 + 2 \times 0}{1} +1 = 3

完整版卷积尺寸计算

完整版卷积尺寸计算考虑了空洞卷积,假设输入图片大小为 I \times I,卷积核大小为 k × k k \times k k×k,stride 为 s s s,padding 的像素数为 p p p,dilation 为 d d d,图片经过卷积之后的尺寸 O 如下:。

O = \displaystyle\frac{I - d \times (k-1) + 2 \times p -1}{s} +1

卷积网络示例

这里使用 input * channel 为 3,output_channel 为 1 ,卷积核大小为

3 \times 3

的卷积核nn.Conv2d(3, 1, 3),使用nn.init.xavier_normal*()方法初始化网络的权值。代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import os
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from matplotlib import pyplot as plt
from common_tools import transform_invert, set_seed

set_seed(3)  # 设置随机种子

# ================================= load img ==================================
path_img = os.path.join(os.path.dirname(os.path.abspath(__file__)), "imgs", "lena.png")
print(path_img)
img = Image.open(path_img).convert('RGB')  # 0~255

# convert to tensor
img_transform = transforms.Compose([transforms.ToTensor()])
img_tensor = img_transform(img)
# 添加 batch 维度
img_tensor.unsqueeze_(dim=0)    # C*H*W to B*C*H*W

# ================================= create convolution layer ==================================

# ================ 2d
flag = 1
# flag = 0
if flag:
    conv_layer = nn.Conv2d(3, 1, 3)   # input:(i, o, size) weights:(o, i , h, w)
    # 初始化卷积层权值
    nn.init.xavier_normal_(conv_layer.weight.data)
	# nn.init.xavier_uniform_(conv_layer.weight.data)
    # calculation
    img_conv = conv_layer(img_tensor)

# ================ transposed
# flag = 1
flag = 0
if flag:
    conv_layer = nn.ConvTranspose2d(3, 1, 3, stride=2)   # input:(input_channel, output_channel, size)
    # 初始化网络层的权值
    nn.init.xavier_normal_(conv_layer.weight.data)

    # calculation
    img_conv = conv_layer(img_tensor)

# ================================= visualization ==================================
print("卷积前尺寸:{}\n卷积后尺寸:{}".format(img_tensor.shape, img_conv.shape))
img_conv = transform_invert(img_conv[0, 0:1, ...], img_transform)
img_raw = transform_invert(img_tensor.squeeze(), img_transform)
plt.subplot(122).imshow(img_conv, cmap='gray')
plt.subplot(121).imshow(img_raw)
plt.show()

通过conv_layer.weight.shape查看卷积核的 shape 是(1, 3, 3, 3),对应是(output_channel, input_channel, kernel_size, kernel_size)。所以第一个维度对应的是卷积核的个数,每个卷积核都是(3,3,3)。虽然每个卷积核都是 3 维的,执行的却是 2 维卷积。下面这个图展示了这个过程。

也就是每个卷积核在 input_channel 维度再划分,这里 input_channel 为 3,那么这时每个卷积核的 shape 是(3, 3)。3 个卷积核在输入图像的每个 channel 上卷积后得到 3 个数,把这 3 个数相加,再加上 bias,得到最后的一个输出。

转置卷积:nn.ConvTranspose()

转置卷积又称为反卷积 (Deconvolution) 和部分跨越卷积 (Fractionally strided Convolution),用于对图像进行上采样。

正常卷积如下:

原始的图片尺寸为

4 \times 4

,卷积核大小为

3 \times 3

padding =0

stride = 1

。由于卷积操作可以通过矩阵运算来解决,因此原始图片可以看作

16 \times 1

的矩阵

I_{16 \times 1}

为什么是16 * 1,因为16是它所有的像素点个数,1是它的图片张数。

卷积核可以看作

4 \times 16

的矩阵

K_{4 \times 16}

,其中,那么输出是

K_{4 \times 16} \times I_{16 \times 1} = O_{4 \times 1}

。(是卷积核 * 图像)

这里的4是输出特征图像素值的总个数,16是通过卷积核补零,符合原图片像素点个数得到的。

转置卷积如下:

原始的图片尺寸为

2 \times 2

,卷积核大小为

3 \times 3

padding =0

stride = 1

。由于卷积操作可以通过矩阵运算来解决,因此原始图片可以看作

4 \times 1

的矩阵

I_{4 \times 1}

这里的4同样是原图的像素点个数。

卷积核可以看作

4 \times 16

的矩阵

K_{16 \times 4}

这里的4不再是通过补零得到的,而是通过剔除得到的。如上图,本来卷积核有9个像素点,但是在实际的情况中卷积核最大只能计算到4个像素点,因此这里就是4。 16是根据输入公式计算得到的输出图片的大小。

那么输出是

K_{16 \times 4} \times I_{4 \times 1} = O_{16 \times 1}

正常卷积核转置卷积矩阵的形状刚好是转置关系,因此称为转置卷积,但里面的权值不是一样的,卷积操作也是不可逆的,简单来讲,就是一张图片经过卷积,然后再经过转置卷积,无法得到原来的图片。

PyTorch 中的转置卷积函数如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
nn.ConvTranspose2d(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, output_padding=0, groups=1, bias=True,
                 dilation=1, padding_mode='zeros')

和普通卷积的参数基本相同。

转置卷积尺寸计算

简化版转置卷积尺寸计算

这里不考虑空洞卷积,假设输入图片大小为 I \times I,卷积核大小为 k × k k \times k k×k,stride 为 s s s,padding 的像素数为 p p p,图片经过卷积之后的尺寸 O 如下,刚好和普通卷积的计算是相反的:

O = (I-1) \times s + k
\text { out } _{\text {size }}=\left(\text { in }_{\text {size }}-1\right) * s t r i d e+\text { kernel }_{\text {size }}

完整版简化版转置卷积尺寸计算

O = (I-1) \times s - 2 \times p + d \times (k-1) + out_padding + 1

转置卷积代码示例如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import os
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from matplotlib import pyplot as plt
from common_tools import transform_invert, set_seed

set_seed(3)  # 设置随机种子

# ================================= load img ==================================
path_img = os.path.join(os.path.dirname(os.path.abspath(__file__)), "imgs", "lena.png")
print(path_img)
img = Image.open(path_img).convert('RGB')  # 0~255

# convert to tensor
img_transform = transforms.Compose([transforms.ToTensor()])
img_tensor = img_transform(img)
# 添加 batch 维度
img_tensor.unsqueeze_(dim=0)    # C*H*W to B*C*H*W

# ================================= create convolution layer ==================================

# ================ 2d
# flag = 1
flag = 0
if flag:
    conv_layer = nn.Conv2d(3, 1, 3)   # input:(i, o, size) weights:(o, i , h, w)
    # 初始化卷积层权值
    nn.init.xavier_normal_(conv_layer.weight.data)
    # nn.init.xavier_uniform_(conv_layer.weight.data)

    # calculation
    img_conv = conv_layer(img_tensor)

# ================ transposed
flag = 1
# flag = 0
if flag:
    conv_layer = nn.ConvTranspose2d(3, 1, 3, stride=2)   # input:(input_channel, output_channel, size)
    # 初始化网络层的权值
    nn.init.xavier_normal_(conv_layer.weight.data)

    # calculation
    img_conv = conv_layer(img_tensor)

# ================================= visualization ==================================
print("卷积前尺寸:{}\n卷积后尺寸:{}".format(img_tensor.shape, img_conv.shape))
img_conv = transform_invert(img_conv[0, 0:1, ...], img_transform)
img_raw = transform_invert(img_tensor.squeeze(), img_transform)
plt.subplot(122).imshow(img_conv, cmap='gray')
plt.subplot(121).imshow(img_raw)
plt.show()

转置卷积前后图片显示如下,左边原图片的尺寸是 (512, 512),右边转置卷积后的图片尺寸是 (1025, 1025)。

转置卷积后的图片一般都会有棋盘效应,像一格一格的棋盘,这是转置卷积的通病。

关于棋盘效应的解释以及解决方法,推荐阅读Deconvolution And Checkerboard Artifacts

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-07-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验