前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >LRU算法与Caffeine、Redis中的缓存淘汰策略

LRU算法与Caffeine、Redis中的缓存淘汰策略

原创
作者头像
疯狂的KK
发布2023-08-17 10:30:38
4670
发布2023-08-17 10:30:38
举报
文章被收录于专栏:Java项目实战

推荐阅读

AI文本 OCR识别最佳实践

AI Gamma一键生成PPT工具直达链接

玩转cloud Studio 在线编码神器

玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间

资源分享

代码语言:javascript
复制
「java、python面试题」来自UC网盘app分享,打开手机app,额外获得1T空间
https://drive.uc.cn/s/2aeb6c2dcedd4
AIGC资料包
https://drive.uc.cn/s/6077fc42116d4
https://pan.xunlei.com/s/VN_qC7kwpKFgKLto4KgP4Do_A1?pwd=7kbv#
https://yv4kfv1n3j.feishu.cn/docx/MRyxdaqz8ow5RjxyL1ucrvOYnnH

引言

在现代计算机系统中,缓存是提高系统性能的关键技术之一。为了避免频繁的IO操作,常见的做法是将数据存储在内存中的缓存中,以便快速访问。然而,由于内存资源有限,缓存的大小是有限的,因此需要一种策略来淘汰缓存中的数据,以便为新的数据腾出空间。本文将介绍一种常用的缓存淘汰策略——最近最少使用(Least Recently Used,LRU)算法,并且比较它与Caffeine和Redis中的缓存淘汰策略。

LRU算法

LRU算法是一种基于访问时间的缓存淘汰策略。其核心思想是根据数据的访问顺序来判断数据的热度,将最近最少使用的数据淘汰出缓存。具体实现上,可以使用一个双向链表和一个哈希表来实现LRU缓存。

双向链表用于记录数据的访问顺序,新访问的数据插入链表头部,而最少访问的数据则位于链表尾部。哈希表用于快速查找数据是否在缓存中,并且能够在O(1)的时间复杂度内找到对应的链表节点。

下面是一个示例的LRU缓存的代码实现:

代码语言:java
复制
class LRUCache {
    private int capacity;
    private Map<Integer, Node> map;
    private Node head;
    private Node tail;

    class Node {
        int key;
        int value;
        Node prev;
        Node next;
    }

    public LRUCache(int capacity) {
        this.capacity = capacity;
        this.map = new HashMap<>();
        this.head = new Node();
        this.tail = new Node();
        head.next = tail;
        tail.prev = head;
    }

    public int get(int key) {
        Node node = map.get(key);
        if (node == null) {
            return -1;
        }
        moveToHead(node);
        return node.value;
    }

    public void put(int key, int value) {
        Node node = map.get(key);
        if (node == null) {
            node = new Node();
            node.key = key;
            node.value = value;
            map.put(key, node);
            addToHead(node);
            if (map.size() > capacity) {
                Node removed = removeTail();
                map.remove(removed.key);
            }
        } else {
            node.value = value;
            moveToHead(node);
        }
    }

    private void addToHead(Node node) {
        node.prev = head;
        node.next = head.next;
        head.next.prev = node;
        head.next = node;
    }

    private void removeNode(Node node) {
        node.prev.next = node.next;
        node.next.prev = node.prev;
    }

    private void moveToHead(Node node) {
        removeNode(node);
        addToHead(node);
    }

    private Node removeTail() {
        Node node = tail.prev;
        removeNode(node);
        return node;
    }
}

上述代码中,LRUCache类是LRU缓存的实现。其中,map用于快速查找节点,head和tail是链表的头尾节点。LRUCache类提供了get和put方法用于获取缓存数据和插入缓存数据。

Caffeine缓存淘汰策略

Caffeine是一种Java缓存库,提供了多种缓存淘汰策略。除了LRU算法外,Caffeine还支持LFU(Least Frequently Used,最不经常使用)和基于时间的淘汰策略。下面是一个示例展示了如何使用Caffeine库来创建一个LRU缓存:

代码语言:java
复制
LoadingCache<String, String> cache = Caffeine.newBuilder()
.cacheLoader(key -> fetchDataFromDB(key))
.maximumSize(1000)
.expireAfterWrite(10, TimeUnit.MINUTES)
.removalListener((key, value, cause) -> System.out.println("Key " + key + " was removed from cache"))
.build();

String data = cache.get("key");

上述代码中,使用Caffeine的newBuilder方法创建一个缓存,设置了最大缓存大小为1000条记录,并且设置了数据在写入后的10分钟内过期。在缓存中找不到数据时,会调用fetchDataFromDB方法从数据库中获取数据,并将数据放入缓存中。

Redis缓存淘汰策略

Redis是一种内存数据库,也提供了多种缓存淘汰策略。与Caffeine类似,Redis也支持LRU、LFU和基于时间的淘汰策略。

在Redis中,可以使用maxmemory-policy配置项来设置缓存淘汰策略。下面是一个示例展示了如何使用Redis的LRU淘汰策略:

代码语言:txt
复制
CONFIG SET maxmemory-policy volatile-lru

上述命令将缓存的淘汰策略设置为volatile-lru,即LRU淘汰策略。当缓存空间达到上限时,Redis会根据数据的访问时间来选择最近最少使用的数据进行淘汰。

总结

本文介绍了LRU算法及其在Caffeine和Redis中的应用。LRU算法是一种常用的缓存淘汰策略,通过记录数据的访问顺序来判断数据的热度,从而决定数据的淘汰顺序。Caffeine和Redis都提供了LRU淘汰策略,并且还支持其他的淘汰策略,以满足不同场景下的需求。

通过本文的介绍,读者可以了解到LRU算法的原理及其在实际应用中的实现方式。同时,也能够了解到Caffeine和Redis这两个常用的缓存库是如何使用LRU淘汰策略来提高缓存性能的。希望本文对读者在面试和实际项目中的应用有所帮助。

参考文献:

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 推荐阅读
  • AI文本 OCR识别最佳实践
  • AI Gamma一键生成PPT工具直达链接
  • 玩转cloud Studio 在线编码神器
  • 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间
  • 资源分享
    • 引言
      • LRU算法
        • Caffeine缓存淘汰策略
          • Redis缓存淘汰策略
            • 总结
            相关产品与服务
            云数据库 Redis®
            腾讯云数据库 Redis®(TencentDB for Redis®)是腾讯云打造的兼容 Redis 协议的缓存和存储服务。丰富的数据结构能帮助您完成不同类型的业务场景开发。支持主从热备,提供自动容灾切换、数据备份、故障迁移、实例监控、在线扩容、数据回档等全套的数据库服务。
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档