AI 时代,DevOps 与 AI 共价结合。AI 由业务需求驱动,提高软件质量,而 DevOps 则从整体提升系统功能。DevOps 团队可以使用 AI 来进行测试、开发、监控、增强和系统发布。AI 能够有效地增强 DevOps 驱动流程,从开发人员的业务实用性和支持的角度来看,评估 AI 在 DevOps 中的重要性是十分必要的。
在本篇文章中,我们将一同探讨 DevOps 如何利用 AI 实现业务上的增强与提升。
DevOps 中存在的摩擦
在 DevOps 实践中,摩擦可能源于软件开发和运营生命周期中的各种挑战和瓶颈。这里我们将总结6个 DevOps 中常见的摩擦。
DevOps 中的一个主要摩擦就是开发和运营团队之间存在孤岛。孤岛团队通常有不同的目标、优先级和流程,导致沟通障碍、协作延迟以及实现共同目标的困难。这种摩擦会阻碍开发和运营的无缝集成,影响软件交付的速度和质量。
此外,DevOps 中的手动流程,例如手动代码部署、环境设置和配置管理,同样会导致效率低下。手动任务耗时、容易出错,并且可能导致跨环境的不一致。这些过程会减慢开发周期,增加人为错误的可能性,并在企业实现高效可靠的软件交付的道路上制造障碍。各种 DevOps 实践中缺乏自动化会效率低下。当构建、测试和部署软件等重复性任务没有自动化时,会增加出错的机会,延长发布过程,并从更具战略意义的活动中转移宝贵的资源。自动化不足也会影响可扩展性,阻碍有效处理不断增加的工作负载的能力。
不充分的反馈循环也会在 DevOps 中产生摩擦。当对代码更改、测试结果或部署的反馈延迟时,会妨碍快速迭代和及时响应问题的能力。缓慢的反馈循环会阻碍缺陷的检测,限制持续集成的有效性,并影响整个开发周期。对软件系统的性能、健康状况和用户体验的可见性不足会在 DevOps 中造成摩擦。如果没有对系统指标、日志和应用程序性能的全面监控和强大的可见性,识别问题、解决问题以及主动响应潜在瓶颈或故障就变得很困难。有限的可见性会导致停机时间延长、系统可靠性降低以及维护服务水平协议困难重重。当事件响应和管理流程定义不明确或缺乏自动化时,就会在 DevOps 中引入摩擦。缓慢的事件检测、低效的沟通和手动事件处理会延长解决时间,影响系统可用性、客户满意度和 DevOps 团队的整体效率。
AI 时代下的 DevOps
DevOps 和 AI 在很多方面都非常匹配。DevOps 需要自动化才能尽可能有效,而 AI 是处理重复性活动的自然选择。当我们盘点 DevOps 团队软件发布延迟的最常见原因是什么时,回答提到了手动、耗时、费力且可能容易出错的活动,例如软件测试、代码审查、安全测试和代码开发。由此可见 AI 可能对许多团队简化这些程序至关重要。
使用 AI 减少 DevOps 摩擦
AI 可以通过提供简化流程和增强协作的自动化、智能和洞察力,从而减少 DevOps 中的摩擦。
通过利用 AI 在自动化、数据分析和智能决策方面的能力,企业可以减少 DevOps 中的摩擦。AI 可以更快、更准确地执行任务,提高可见性,增强协作,并使团队能够做出数据驱动的决策,从而实现更顺畅的工作流程、更高的效率和加速的软件交付。
利用 AI 实现持续的安全性和合规性
利用 AI 来实现 DevOps 中的持续的安全性和合规性可以提供实时的风险评估、自动化的安全测试和合规检查,并通过智能化驱动的决策支持来减少潜在的安全漏洞和风险。
其中自动合规性测试应确保满足所有要求,并且使功能可用于生产。自动合规性检查的复杂性可以从一个框架到自动化基础设施合规性,再到一些基本的东西,比如专门为检查合规性而创建的一组测试。
成功案例一览
以下是在 DevOps 中利用 AI 的组织的著名示例、通过 AI 集成实现了对业务的正面影响并获得可观收益。
AI 与 DevOps 未来趋势
随着对有效且可扩展的软件开发流程的需求不断增长,AI-Enabled DevOps 的未来不可估量。为了最大限度地发挥其优势并保证无缝集成,AI 与 DevOps 集成需要仔细考虑。此外,预测分析、智能决策以及自动化测试和监控是 AI 在 DevOps 中的一些可能用途。为了降低漏洞风险并保持对法律法规的遵守,在 DevOps 中实施 AI 时优先考虑安全和数据隐私至关重要。
最重要的是,企业如果想要实现支持 AI 的 DevOps,就必须在基础设施和培训方面进行投资,以支持 AI 驱动的解决方案的创建和实施。