前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >AI 和 DevOps:实现高效软件交付的完美组合

AI 和 DevOps:实现高效软件交付的完美组合

作者头像
我是阳明
发布于 2023-08-21 07:28:45
发布于 2023-08-21 07:28:45
6800
举报
文章被收录于专栏:k8s技术圈k8s技术圈

AI 时代,DevOps 与 AI 共价结合。AI 由业务需求驱动,提高软件质量,而 DevOps 则从整体提升系统功能。DevOps 团队可以使用 AI 来进行测试、开发、监控、增强和系统发布。AI 能够有效地增强 DevOps 驱动流程,从开发人员的业务实用性和支持的角度来看,评估 AI 在 DevOps 中的重要性是十分必要的。

在本篇文章中,我们将一同探讨 DevOps 如何利用 AI 实现业务上的增强与提升。

DevOps 中存在的摩擦

在 DevOps 实践中,摩擦可能源于软件开发和运营生命周期中的各种挑战和瓶颈。这里我们将总结6个 DevOps 中常见的摩擦。

DevOps 中的一个主要摩擦就是开发和运营团队之间存在孤岛。孤岛团队通常有不同的目标、优先级和流程,导致沟通障碍、协作延迟以及实现共同目标的困难。这种摩擦会阻碍开发和运营的无缝集成,影响软件交付的速度和质量。

此外,DevOps 中的手动流程,例如手动代码部署、环境设置和配置管理,同样会导致效率低下。手动任务耗时、容易出错,并且可能导致跨环境的不一致。这些过程会减慢开发周期,增加人为错误的可能性,并在企业实现高效可靠的软件交付的道路上制造障碍。各种 DevOps 实践中缺乏自动化会效率低下。当构建、测试和部署软件等重复性任务没有自动化时,会增加出错的机会,延长发布过程,并从更具战略意义的活动中转移宝贵的资源。自动化不足也会影响可扩展性,阻碍有效处理不断增加的工作负载的能力。

不充分的反馈循环也会在 DevOps 中产生摩擦。当对代码更改、测试结果或部署的反馈延迟时,会妨碍快速迭代和及时响应问题的能力。缓慢的反馈循环会阻碍缺陷的检测,限制持续集成的有效性,并影响整个开发周期。对软件系统的性能、健康状况和用户体验的可见性不足会在 DevOps 中造成摩擦。如果没有对系统指标、日志和应用程序性能的全面监控和强大的可见性,识别问题、解决问题以及主动响应潜在瓶颈或故障就变得很困难。有限的可见性会导致停机时间延长、系统可靠性降低以及维护服务水平协议困难重重。当事件响应和管理流程定义不明确或缺乏自动化时,就会在 DevOps 中引入摩擦。缓慢的事件检测、低效的沟通和手动事件处理会延长解决时间,影响系统可用性、客户满意度和 DevOps 团队的整体效率。

AI 时代下的 DevOps

DevOps 和 AI 在很多方面都非常匹配。DevOps 需要自动化才能尽可能有效,而 AI 是处理重复性活动的自然选择。当我们盘点 DevOps 团队软件发布延迟的最常见原因是什么时,回答提到了手动、耗时、费力且可能容易出错的活动,例如软件测试、代码审查、安全测试和代码开发。由此可见 AI 可能对许多团队简化这些程序至关重要。

使用 AI 减少 DevOps 摩擦

AI 可以通过提供简化流程和增强协作的自动化、智能和洞察力,从而减少 DevOps 中的摩擦。

  • 自动化流程:AI 可以自动化手动和重复性任务,例如环境设置、配置管理和部署流程。通过利用 AI 支持的工具和平台,DevOps 团队可以加快工作流程,减少人为错误,并释放资源用于更具战略意义的活动。
  • 持续反馈和测试:AI 通过自动化代码分析、测试用例生成和质量保证来实现持续集成和测试。AI 算法分析代码存储库、识别潜在问题并提供可操作的建议。这通过提高代码质量、增加测试覆盖率和启用更快的反馈循环来减少摩擦。
  • 智能监控和警报:AI 监控工具可以分析来自日志、指标和用户行为的大量数据。AI 算法检测异常、预测性能问题并触发智能警报。这提高了对系统健康状况的可见性,减少了平均检测时间 (MTTD),并促进了更快的事件响应和解决。
  • 预测分析和容量规划:AI 能够分析历史使用模式、用户行为和工作负载趋势,以提供准确的容量规划和资源分配建议。通过利用 AI 算法,DevOps 团队可以优化资源配置、预测峰值负载并避免过度配置和利用不足,从而减少由可扩展性和资源管理问题引起的摩擦。
  • 智能事件管理:AI 可以自动进行事件检测、分类和解决。AI算法可以分析事件数据、识别模式并建议适当的补救措施。AI 驱动的聊天机器人和虚拟助手可以协助事件报告和响应,减少响应时间,最大限度地减少停机时间,并提高事件管理效率。

通过利用 AI 在自动化、数据分析和智能决策方面的能力,企业可以减少 DevOps 中的摩擦。AI 可以更快、更准确地执行任务,提高可见性,增强协作,并使团队能够做出数据驱动的决策,从而实现更顺畅的工作流程、更高的效率和加速的软件交付。

利用 AI 实现持续的安全性和合规性

利用 AI 来实现 DevOps 中的持续的安全性和合规性可以提供实时的风险评估、自动化的安全测试和合规检查,并通过智能化驱动的决策支持来减少潜在的安全漏洞和风险。

  • 实时风险评估:AI 监测和分析各种安全事件和数据源,包括日志、监控指标、网络流量等,以了解别潜在的威胁和漏洞。AI 算法以自动分析异常行为、恶意活动和安全事件模型,提供实时的风险评估,帮助 DevOps 团队快速识别和应对安全威胁。
  • 合规性检查和自动化:AI 可以分析合规性要求、标准和方法,并自动检查系统的合规性。AI 算法自行扫描配置文件件、访问控制策略和日志数据,识别违反合规性规则的为此,并提供自动化的合规性报告。这有助于确保系统满足标准和标准的要求,并降低合规性风险。
  • 智能决策支持:AI 为DevOps团队提供智能决策支持,帮助他们在安全和符合规范方面做出更明确的决策。通过分析。大量的安全数据和历史案例,AI 可以提供针对特定安全事件或合规问题的建议和最佳实践。这可以帮助团队更好地理解和评估风险,并采纳适当的措施来提出更高的安全性和合规性性。
  • 自动化安全审计日志分析:AI 分析和审计大纲模型的安全日志和事件数据,以便检测异常活动、入试测试和数据暴露。AI 算法可以自动识别别潜在的威胁模型,提供实时的报警和响应,帮助团队及时间发现并应对安全事件。

其中自动合规性测试应确保满足所有要求,并且使功能可用于生产。自动合规性检查的复杂性可以从一个框架到自动化基础设施合规性,再到一些基本的东西,比如专门为检查合规性而创建的一组测试。

成功案例一览

以下是在 DevOps 中利用 AI 的组织的著名示例、通过 AI 集成实现了对业务的正面影响并获得可观收益。

  • Netflix - Netflix 高度依赖于在其 DevOps 流程中使用 AI。他们复杂的推荐系统利用 AI 算法来分析用户数据并提供个性化的内容推荐。这个 AI 驱动的系统通过留住订阅者和提供个性化的用户体验,在很大程度上为他们的成功做出了贡献。
  • Google - Google 在 (CI/CD) 流水线中使用 AI。其 Cloud Build 平台采用 AI 算法来检测代码漏洞、推荐修复并自动运行测试,以确保已部署软件的完整性和安全性。
  • Facebook - 在 Facebook 的 DevOps 实践中使用 AI 提高了它们的性能。其 AI 系统 Proxygen 使用机器学习算法分析网络流量并优化网络服务器性能。此实施显著改善了更快的响应时间和更好的用户体验。

AI 与 DevOps 未来趋势

随着对有效且可扩展的软件开发流程的需求不断增长,AI-Enabled DevOps 的未来不可估量。为了最大限度地发挥其优势并保证无缝集成,AI 与 DevOps 集成需要仔细考虑。此外,预测分析、智能决策以及自动化测试和监控是 AI 在 DevOps 中的一些可能用途。为了降低漏洞风险并保持对法律法规的遵守,在 DevOps 中实施 AI 时优先考虑安全和数据隐私至关重要

最重要的是,企业如果想要实现支持 AI 的 DevOps,就必须在基础设施和培训方面进行投资,以支持 AI 驱动的解决方案的创建和实施。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-07-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 k8s技术圈 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
Raft: 寻找可理解的共识算法(完)
Figure 10: Switching directly from one configuration to another is unsafe because different servers will switch at different times. In this example, the cluster grows from three servers to five. Unfortunately, there is a point in time where two different leaders can be elected for the same term, one with a majority of the old configuration (Cold) and another with a majority of the new configuration (Cnew).
s09g
2022/07/06
5090
Raft: 寻找可理解的共识算法(完)
Raft: 寻找可理解的共识算法(2)
Figure 2: A condensed summary of the Raft consensus algorithm (excluding membership changes and log compaction). The server behavior in the upper-left box is described as a set of rules that trigger independently and repeatedly. Section numbers such as §5.2 indicate where particular features are discussed. A formal specification [31] describes the algorithm more precisely.
s09g
2022/07/06
5490
Raft: 寻找可理解的共识算法(2)
Raft: 寻找可理解的共识算法(3)
Figure 6: Logs are composed of entries, which are numbered sequentially. Each entry contains the term in which it was created (the number in each box) and a command for the state machine. An entry is considered committed if it is safe for that entry to be applied to state machines.
s09g
2022/07/06
4490
Raft: 寻找可理解的共识算法(3)
详细解读Raft 共识算法
1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标:
Kunkka Wu
2022/01/13
1.9K0
详细解读Raft 共识算法
raft算法详解_python raft
  raft是工程上使用较为广泛的强一致性、去中心化、高可用的分布式协议。在这里强调了是在工程上,因为在学术理论界,最耀眼的还是大名鼎鼎的Paxos。但Paxos是:少数真正理解的人觉得简单,尚未理解的人觉得很难,大多数人都是一知半解。本人也花了很多时间、看了很多材料也没有真正理解。直到看到raft的论文,两位研究者也提到,他们也花了很长的时间来理解Paxos,他们也觉得很难理解,于是研究出了raft算法。
全栈程序员站长
2022/09/20
8100
raft算法详解_python raft
Raft 共识算法总结
Raft 算法是目前应用广泛的分布式共识算法,在许多知名的开源项目比如 etcd 中,都有 Raft 的身影。同时,随着 MIT6.824 课程的普及,Raft 俨然成为了最广为人知的分布式共识算法。
月梦@剑心
2024/02/14
2410
Raft 共识算法总结
共识算法-raft论文分析
中文:https://destinywang.github.io/blog/2018/04/15/%E7%BF%BB%E8%AF%91-In-Search-of-an-Understandable-Consensus-Algorithm-%E2%80%94%E2%80%94-Raft%E7%AE%97%E6%B3%95/
早起的鸟儿有虫吃
2019/05/14
8210
共识算法-raft论文分析
Raft 一致性协议算法 《In search of an Understandable Consensus Algorithm (Extended Version)》
《In search of an Understandable Consensus Algorithm (Extended Version)》
WindWant
2020/09/11
1.8K0
Raft 一致性协议算法 《In search of an Understandable Consensus Algorithm (Extended Version)》
MIT 6.824 - Raft学生指南
For the past few months, I have been a Teaching Assistant for MIT’s 6.824 Distributed Systems class. The class has traditionally had a number of labs building on the Paxos consensus algorithm, but this year, we decided to make the move to Raft. Raft was “designed to be easy to understand”, and our hope was that the change might make the students’ lives easier.
s09g
2022/07/06
8660
raft 共识算法详解
上一次分享了 CAP 定理,我们了解到在有网络分区(Partition)的情况下,我们只能在一致性(Consistency)与可用性(Availability)之间二择一,更进一步地说,我们其实是在光谱的两端 — 强一致性(Strong Consistency)与最终一致性(Eventually Consistency)之间做选择。
写bug的高哈哈
2024/11/04
1660
raft 共识算法详解
CAP, BASE, Paxos, and Raft: Key Concepts in Distributed Systems
When discussing the design principles underpinning distributed systems, the CAP theorem and BASE theory serve as essential foundations that warrant our understanding.
ppxai
2023/11/18
2360
由Consul谈到Raft
在前一篇文章consul配置与实战中,介绍了consul的一些内幕及consul配置相关,并对项目中的一些实际配置进行展示。这篇文章重点介绍consul中所涉及到的一致性算法raft。 1. 背景 分布式系统的一致性是相当重要的,即为CAP理论中的C(Consistency)。一致性又可以分为强一致性和最终一致性。这篇文章重点讨论强一致性算法raft。 Lamport发表Paxos一致性算法从90年提出到现在已经有二十几年了,直到2006年Google的三篇论文初现“云”的端倪,其中的Chubby Lock
aoho求索
2018/04/03
1.7K0
由Consul谈到Raft
从JRaft来看Raft协议实现细节
一致性问题(consensus problem)是分布式系统需要解决的一个核心问题。分布式系统一般是由多个地位相等的节点组成,各个节点之间的交互就好比几个人聚在一起讨论问题。让我们设想一个更具体的场景,比如三个人讨论中午去哪里吃饭,第一个人说附近刚开了一个火锅店,听说味道非常不错;但第二个人说,不好,吃火锅花的时间太久了,还是随便喝点粥算了;而第三个人说,那个粥店我昨天刚去过,太难喝了,还不如去吃麦当劳。结果,三个人僵持不下,始终达不成一致。
luozhiyun
2020/06/18
1.2K0
从JRaft来看Raft协议实现细节
一致性协议浅析:从逻辑时钟到Raft
春节在家闲着没事看了几篇论文,把一致性协议的几篇论文都过了一遍。在看这些论文之前,我一直有一些疑惑,比如同样是有Leader和两阶段提交,Zookeeper的ZAB协议和Raft有什么不同,Paxos协议到底要怎样才能用在实际工程中,这些问题我都在这些论文中找到了答案。接下来,我将尝试以自己的语言给大家讲讲这些协议,使大家能够理解这些算法。同时,我自己也有些疑问,我会在我的阐述中提出,也欢迎大家一起讨论。水平有限,文中难免会有一些纰漏门也欢迎大家指出。
王知无-import_bigdata
2019/07/09
1.1K0
一致性协议浅析:从逻辑时钟到Raft
分布式共识算法(Paxos、Raft)
多个参与者针对某一件事达成完全一致:一件事,一个结论。 已达成一致的结论,不可推翻。
leobhao
2022/06/28
3.7K0
分布式共识算法(Paxos、Raft)
浅谈 CAP 和 Paxos 共识算法
作者:郑勰,腾讯 CSIG 网络产品部后台开发工程师 什么是 CAP 关于 CAP 理论的背景介绍已经很多,这里不过多介绍,我们谈谈如何理解它的问题。 用通俗易懂的话解释三个名词: 一致性 如果刚刚向一个节点写入,那么之后,从另外一个节点读取的必须是刚刚写入的数据,不能是更老的数据。 可用性 如果请求一个节点,这个节点必须能够给予回复,如果节点挂掉了,那就谈不上可用性了。 分区容忍性 是否容忍网络分区,即可以允许节点和其它节点无法通信。 CAP 的意思就是说我们最多只能保证其中两个条件同时成立
腾讯技术工程官方号
2020/02/14
9980
浅谈 CAP 和 Paxos 共识算法
深入剖析共识性算法 Raft
Raft 是一种为了管理日志复制的分布式一致性算法。Raft 出现之前,Paxos 一直是分布式一致性算法的标准。Paxos 难以理解,更难以实现。Raft 的设计目标是简化 Paxos,使得算法既容易理解,也容易实现。
2020labs小助手
2021/04/19
1.3K0
解读Raft(一 算法基础)
最近工作中讨论到了Raft协议相关的一些问题,正好之前读过多次Raft协议的那paper,所以趁着讨论做一次总结整理。
林一
2018/07/24
6991
解读Raft(一 算法基础)
Raft 算法分析
官方定义: A Distributed Coordination Service for Distributed Applications。本质:基于内存的 KV 系统,以 path 为 key。
Yano_nankai
2021/01/26
6770
Raft 算法分析
从Paxos到Raft,分布式一致性算法解析
导语 | 后台服务架构经过了集中式、SOA、微服务和服务网格四个阶段,目前互联网界大都使用微服务和服务网格。服务从集中式、中心化向分布式、去中心化不断演进,服务也变得更灵活,能够自动扩缩容、快速版本迭代等。但是分布式架构也将集中式下一些问题放大,比如通信故障、请求三态(成功、失败、超时)、节点故障等,这些问题会导致一系例数据不一致的问题,也是计算机领域的老大难问题。本文将与大家一起学习分布式一致性算法,因作者水平有限,若文中有不正处,还请多多指导。文章作者:董友康,腾讯PCG研发工程师。 一、CA
腾讯云开发者
2021/03/01
5250
相关推荐
Raft: 寻找可理解的共识算法(完)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档