Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >CVPR 2023 | 图像超分,结合扩散模型/GAN/部署优化,low-level任务,视觉AIGC系列

CVPR 2023 | 图像超分,结合扩散模型/GAN/部署优化,low-level任务,视觉AIGC系列

作者头像
公众号机器学习与AI生成创作
发布于 2023-08-22 10:14:57
发布于 2023-08-22 10:14:57
2.6K0
举报

1、Activating More Pixels in Image Super-Resolution Transformer

基于Transformer的方法在低级别视觉任务中,如图像超分辨率,表现出了令人印象深刻的性能。Transformer的潜力在现有网络中仍未得到充分发挥。为了激活更多的输入像素以实现更好的重建,提出了一种新的混合注意力Transformer(HAT)。它同时结合了通道注意力和基于窗口的自注意力方案,从而充分利用了它们各自的优势,即能够利用全局统计和强大的局部拟合能力。

此外,为了更好地聚合跨窗口信息,引入了一种重叠的交叉注意力模块,以增强相邻窗口特征之间的交互作用。在训练阶段,采用同一任务预训练策略来利用模型的潜力以实现进一步的改进。大量实验证明了所提出的模块的有效性,进一步扩展了模型以显示出该任务的性能可以得到极大的提高。整体方法在PSNR比现有最先进的方法高出1dB以上。

https://github.com/XPixelGroup/HAT

2、Denoising Diffusion Probabilistic Models for Robust Image Super-Resolution in the Wild

扩散模型在单幅图像超分辨率和其他图像-图像转换任务中显示出良好的效果。尽管取得了这样的成功,但在更具挑战性的盲超分辨率任务中,它们的表现并没有超过最先进的GAN模型,在盲超分辨率任务中,输入图像的分布不均匀,退化未知。

本文介绍了一种基于扩散的盲超分辨率模型SR3+,为此,将自监督训练与训练和测试期间的噪声调节增强相结合。SR3+的性能大大优于SR3。在相同的数据上训练时,优于RealESRGAN。

3、Implicit Diffusion Models for Continuous Super-Resolution

图像超分辨率(SR)因其广泛的应用而受到越来越多的关注。然而,当前的SR方法通常受到过度平滑和伪影的影响,而大多数工作只能进行固定放大倍数。本文介绍了一种隐式扩散模型(IDM),用于高保真连续图像超分辨率。

IDM采用隐式神经表示和去噪扩散模型相结合的统一端到端框架,其中,在解码过程中采用了隐式神经表示来学习连续分辨率表示。此外,设计了一种比例自适应调节机制,其中包括低分辨率(LR)调节网络和一个比例因子,该比例因子调节分辨率并相应地调节最终输出中的LR信息和生成特征的比例,从而使模型适应连续分辨率要求。大量实验证实了IDM有效性,并展示其在先前艺术品中的卓越性能。代码在https://github.com/Ree1s/IDM

4、Perception-Oriented Single Image Super-Resolution using Optimal Objective Estimation

相对于使用失真导向损失(如L1或L2)训练的网络而言,使用感知和对抗损失训练的单图像超分辨率(SISR)网络提供了高对比度输出。但是,已经表明,使用单个感知损失无法准确恢复图片中的局部不同形状,往往会产生不良伪像或不自然的细节。因此,人们尝试了各种损失的组合,例如感知、对抗和失真损失,但往往很难找到最优的组合。

本文提出了一种新的SISR框架,应用于每个区域进行最优目标生成,以在高分辨率输出的整体区域中生成合理的结果。具体来说,该框架包括两个模型:一个预测模型,用于推断给定低分辨率(LR)输入的最佳目标图;一个生成模型,生成相应的SR输出。生成模型基于提出的目标轨迹进行训练,该轨迹表示一组基本目标,使单个网络能够学习与轨迹上组合的损失相对应的各种SR结果。

在五个基准测试中,实验结果表明,该方法在LPIPS、DISTS、PSNR和SSIM度量上优于最先进的感知驱动SR方法。视觉结果也证明了方法在感知导向重构方面的优越性。代码和模型在https://github.com/seunghosnu/SROOE

5、Structured Sparsity Learning for Efficient Video Super-Resolution

现有视频超分辨率(VSR)模型的高计算成本阻碍了它们在资源受限的设备(例如智能手机和无人机)上的部署。现有VSR模型包含相当多的冗余参数,拖慢推理效率。为了剪枝这些不重要的参数,根据VSR的特性开发了一种结构化剪枝方案,称为结构稀疏学习(SSL)。

SSL为VSR模型的多个关键组件设计了剪枝方案,包括残差块、递归网络和上采样网络。具体而言,为递归网络的残差块设计了一种残差稀疏连接(RSC)方案,以解放剪枝限制并保留恢复信息。对于上采样网络,设计了一个像素洗牌剪枝方案,以保证特征通道空间转换的准确性。此外观察到,在隐藏状态沿着递归网络传播时,剪枝误差会被放大。为缓解此问题,设计了时间微调(TF)。大量实验证明了SSL在定量和定性上都显著优于最近的方法。代码在https://github.com/Zj-BinXia/SSL

6、Super-Resolution Neural Operator

提出超分辨率神经算子(Super-resolution Neural Operator,SRNO),可以从低分辨率(LR)对应物中解决高分辨率(HR)图像的任意缩放。将LR-HR图像对视为使用不同网格大小近似的连续函数,SRNO学习了对应的函数空间之间的映射。

与先前的连续SR工作相比,SRNO的关键特征是:1)每层中的核积分通过Galerkin类型的注意力得到高效实现,在空间域中具有非局部特性,从而有利于网格自由的连续性;2)多层注意力结构允许动态潜在基础更新,这对于SR问题从LR图像“幻想”高频信息非常重要。

实验结果表明,SRNO在准确性和运行时间方面优于现有的连续SR方法。代码在https://github.com/2y7c3/Super-Resolution-Neural-Operator

7、Towards High-Quality and Efficient Video Super-Resolution via Spatial-Temporal Data Overfitting

提出一种新的高质量、高效的视频分辨率提高方法,利用时空信息将视频准确地分成块,从而将块的数量和模型大小保持在最小。在现成的移动电话上部署模型,实验结果表明,方法实现了具有高视频质量的实时视频超分辨率。与最先进的方法相比,在实时视频分辨率提高任务中实现了28 fps的流媒体速度,41.6 PSNR,速度提高了14倍,质量提高了2.29 dB。代码将发布:https://github.com/coulsonlee/STDO-CVPR2023

关注公众号【机器学习与AI生成创作】,更多精彩等你来读

深入浅出stable diffusion:AI作画技术背后的潜在扩散模型论文解读

深入浅出ControlNet,一种可控生成的AIGC绘画生成算法!

经典GAN不得不读:StyleGAN

戳我,查看GAN的系列专辑~

一杯奶茶,成为AIGC+CV视觉的前沿弄潮儿!

最新最全100篇汇总!生成扩散模型Diffusion Models

ECCV2022 | 生成对抗网络GAN部分论文汇总

CVPR 2022 | 25+方向、最新50篇GAN论文

ICCV 2021 | 35个主题GAN论文汇总

超110篇!CVPR 2021最全GAN论文梳理

超100篇!CVPR 2020最全GAN论文梳理

拆解组新的GAN:解耦表征MixNMatch

StarGAN第2版:多域多样性图像生成

附下载 | 《可解释的机器学习》中文版

附下载 |《TensorFlow 2.0 深度学习算法实战》

附下载 |《计算机视觉中的数学方法》分享

《基于深度学习的表面缺陷检测方法综述》

《零样本图像分类综述: 十年进展》

《基于深度神经网络的少样本学习综述》

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-06-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习与AI生成创作 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
CVPR 2024 | 图像超分、图像恢复汇总!用AIGC扩散模型diffusion来解决图像low-level任务的思路
超分辨率(SR)和图像生成是计算机视觉中重要的任务,在现实应用中得到广泛采用。然而,大多数现有方法仅在固定放大倍数下生成图像,并且容易出现过平滑和伪影。此外,在输出图像的多样性和不同尺度下的一致性方面也不足。大部分相关工作应用了隐式神经表示(INR)到去噪扩散模型中,以获得连续分辨率的多样化且高质量的SR结果。由于该模型在图像空间中操作,所以产生分辨率越大的图像,需要的内存和推理时间也越多,并且它也不能保持尺度特定的一致性。
公众号机器学习与AI生成创作
2024/04/12
4.3K0
CVPR 2024 | 图像超分、图像恢复汇总!用AIGC扩散模型diffusion来解决图像low-level任务的思路
CVPR 2023 | 去雨去噪去模糊,图像low-level任务,视觉AIGC系列
基于Transformer的方法在图像去雨任务中取得了显著的性能,因为它们可以对重要的非局部信息进行建模,这对高质量的图像重建至关重要。本文发现大多数现有的Transformer通常使用查询-键对中的所有token的相似性进行特征聚合。然而,如果查询中的token与键中的token不同,从这些token估计的自关注值也会涉及到特征聚合,这相应地会干扰清晰的图像恢复。
公众号机器学习与AI生成创作
2023/08/22
1.7K0
CVPR 2023 | 去雨去噪去模糊,图像low-level任务,视觉AIGC系列
SFT-GAN、CSRCNN、CSNLN、HAN+、Config (f)…你都掌握了吗?一文总结超分辨率分析必备经典模型(三)
 机器之心专栏 本专栏由机器之心SOTA!模型资源站出品,每周日于机器之心公众号持续更新。 本专栏将逐一盘点自然语言处理、计算机视觉等领域下的常见任务,并对在这些任务上取得过 SOTA 的经典模型逐一详解。前往 SOTA!模型资源站(sota.jiqizhixin.com)即可获取本文中包含的模型实现代码、预训练模型及 API 等资源。 本文将分 3 期进行连载,共介绍 16 个在超分辨率任务上曾取得 SOTA 的经典模型。 第 1 期:SRCNN、DRCN、FSRCNN、ESPCN、SRGAN、RED
机器之心
2023/05/01
8290
SFT-GAN、CSRCNN、CSNLN、HAN+、Config (f)…你都掌握了吗?一文总结超分辨率分析必备经典模型(三)
ICCV 2023 | 9篇论文看扩散模型diffusion用于图像恢复任务:超分、恢复、增强、去模糊、去阴影
尽管高光谱图像(hyperspectral image,HSIs)在执行各种计算机视觉任务中的重要性已被证明,但由于在空间域中具有低分辨率(LR)属性,其潜力受到不利影响,这是由多种物理因素引起的。
公众号机器学习与AI生成创作
2024/01/30
6.7K0
ICCV 2023 | 9篇论文看扩散模型diffusion用于图像恢复任务:超分、恢复、增强、去模糊、去阴影
使用多尺度扩散实现超分辨率的频域细化
单张图像的超分辨率(SR)是一项至关重要的任务,并吸引了持续的研究兴趣,这对于提高各种下游任务的低分辨率(LR)图像的质量起着至关重要的作用。从频域的角度来看,导致LR图像的自然或人为退化过程可以看作是对相应高分辨率(HR)图像的广泛低通滤波,导致高频细节的显著损失。因此,重建高质量HR图像的主要难点在于对缺失的高频信息的恢复。近年来,随着深度学习技术的不断创新,出现了各种超分辨率方法。这些方法可以分为两类,即基于回归的方法和生成方法。
用户1324186
2024/06/25
1K0
使用多尺度扩散实现超分辨率的频域细化
GAN的发展系列三(LapGAN、SRGAN)
一、 LapGAN 论文:《Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks》 论文地址:https://arxiv.org/abs/1506.05751 1、基本思路 LapGAN是建立在GAN和CGAN的基础上,采用Laplacian Pyramid拉普拉斯金字塔的方式生成由粗到细的图像,从而生成高分辨率图像。在金字塔的每一层都是学习与相邻层的残差,通过不断堆叠CGAN得到最后的分辨率。CGAN我们在前面的文章介绍过就是在GAN的基础上加入了条件约束,来缓解原始GAN生成器生成样本过于自由的问题。 原始GAN的公式为:
Minerva
2020/06/17
1.7K0
CVPR2024 | CoSeR:连接图像与语言实现认知超分辨率
真实世界的图像超分辨率(SR)是图像处理领域的一项基本任务,旨在增强低分辨率(LR)图像,生成对应的高分辨率(HR)图像。尽管近年来该领域取得了重大进展,但复杂现实场景的处理仍然面临着持久的挑战。利用图像先验是解决现实世界SR问题的常用策略,而最近出现的文生图扩散模型显示出基于用户提供的提示生成高质量图像的卓越能力。这些模型不仅具有强大的图像先验,而且能够以语言的形式对人类指令做出精确的反应。这展示了连接低级图像处理和高级抽象认知的可能性。传统的图像超分辨率技术坚持自下而上的方法,主要集中于局部内容和直接像素级处理。这些方法在把握整体图像上下文方面表现出固有的局限性,往往无法恢复严重退化但语义上至关重要的细节。此外,考虑到LR图像的病态性质,有可能引入语义错误的纹理。为了应对这些挑战,有必要为 SR 模型注入“认知”能力。因此,本文提出了一种先进的 SR 方法,称为认知超分辨率(CoSeR),它与人类在图像感知中采用的自上而下的认知过程一致。它从认知嵌入的生成开始,这是一种封装了 LR 图像总体理解的表示,包含场景语义和图像外观。这种认知嵌入能够精确地利用嵌入在预训练的文生图模型中的隐含先验知识,从而以类似于人类专业知识的方式增强恢复图像细节的能力。先前的工作使用分割图来提供语义,然而,获取现实世界LR图像的理想的分割图仍然很困难,且语义分割受限于预先定义的类别,限制了它在开放世界场景中的适用性。除了隐式地利用扩散先验,本文还显式地利用了图像先验。本文提出了一种新的方法,使用来自 LR 输入的认知嵌入,通过扩散模型生成参考图像,并将其用于指导恢复过程。如图1所示,认知嵌入包含了语言理解,同时保留了图像的颜色和纹理信息,从而产生了高质量的参考图像,不仅在语义上对齐,而且在外观上相似。这种显式方法在捕获高清纹理方面带来了实质性的改进。为了同时保证纹理的真实感和保真度,本文引入了一种“All-in-Attention”设计,通过注意机制集成了多个信息源,包括认知嵌入、参考图像和 LR 输入。这种方法允许模型灵活地使用不同的条件组件,从而产生改进的结果。实验表明,与以前的方法相比,本文的模型在生成更复杂的纹理的同时保持了保真度。
用户1324186
2024/04/12
1.1K0
CVPR2024 | CoSeR:连接图像与语言实现认知超分辨率
超分辨率 | 综述!使用深度学习来实现图像超分辨率
今天给大家介绍一篇图像超分辨率邻域的综述,这篇综述总结了图像超分辨率领域的几方面:problem settings、数据集、performance metrics、SR方法、特定领域应用以结构组件形式,同时,总结超分方法的优点与限制。讨论了存在的问题和挑战,以及未来的趋势和发展方向。
AI算法修炼营
2020/05/26
7K0
超分辨率 | 综述!使用深度学习来实现图像超分辨率
ICCV2021 RealVSR: ​业界首个移动端真实场景视频超分数据集。 附:深度思考
视频超分旨在对低分辨率视频提升分辨率的同时对细节进行增强(可能还会附带噪声抑制、压缩伪影移除亦或取出运动模糊)。现有的视频超分方案大多在合成数据上进行训练,这种简单的退化机制在面对真实场景的复杂退化时就会出现严重的性能下降。因此,如何将学术界的视频超分方案应用到真实场景,或者缩小两者之间的性能差异就更为值得进行探索与研究 。
AIWalker
2021/09/17
1.6K0
ICCV2021 RealVSR: ​业界首个移动端真实场景视频超分数据集。 附:深度思考
AI:你总要高清视频,它来了
Magnific 图像超分 & 增强工具还正在火热体验中,它强大的图像升频与再创能力收获一致好评。现在,视频领域也有了自己的 Magnific。
机器之心
2024/01/17
2210
AI:你总要高清视频,它来了
CVPR 2020 | 几篇GAN在low-level vision中的应用论文
【图像分离、去雨/反射/阴影等】Deep Adversarial Decomposition: A Unified Framework for Separating Superimposed Images
公众号机器学习与AI生成创作
2020/06/19
1.3K0
CVPR 2020 | 几篇GAN在low-level vision中的应用论文
CVPR 2025 Oral | DiffFNO:傅里叶神经算子助力扩散,开启任意尺度超分辨率新篇章
本文由圣路易斯华盛顿大学与北京大学联合完成,第一作者为圣路易斯华盛顿大学的刘晓一,他在北京大学访问期间完成了该项研究;通讯作者为北京大学计算机学院唐浩助理教授 / 研究员。
机器之心
2025/05/05
3290
CVPR 2025 Oral | DiffFNO:傅里叶神经算子助力扩散,开启任意尺度超分辨率新篇章
【计算摄影】图像与视频超分辨,深度学习核心技术与展望
图像超分,就是要将低分辨率的图像恢复为高分辨率的图像,它在日常的图像和视频存储与浏览中都有广泛的应用,本次我们介绍基于深度学习的图像超分辨核心技术。
用户1508658
2021/05/10
1.1K0
【计算摄影】图像与视频超分辨,深度学习核心技术与展望
零基础 Pytorch 入门超分辨率
超分辨率(Super-Resolution, SR)重建技术的基本思想是釆用信号处理的方法,在改善低分辨率(Low Resolution, LR)图像质量的同时,重建成像系统截止频率之外的信息,从而在不改变硬件设备的前提下,获取高分辨率(High Resolution, HR)的图像。
OpenMMLab 官方账号
2022/01/18
1K0
零基础 Pytorch 入门超分辨率
IBC 2023 | 最新人工智能/深度学习模型趋势在超分辨率视频增强中的技术概述
超分辨率(SR)方法指的是从低分辨率输入生成高分辨率图像或视频的过程。这些技术几十年来一直是研究的重要课题,早期的 SR 方法依赖于空间插值技术。虽然这些方法简单且有效,但上转换图像的质量受到其无法生成高频细节的能力的限制。随着时间的推移,引入了更复杂的方法,包括统计、基于预测、基于块或基于边缘的方法。然而,最显著的进步是由新兴的深度学习技术,特别是卷积神经网络(CNNs)带来的。尽管卷积神经网络(CNNs)自 20 世纪 80 年代以来就存在,但直到 20 世纪 90 年代中期,由于缺乏适合训练和运行大型网络的硬件,它们才开始在研究社区中获得广泛关注。
用户1324186
2024/03/20
4230
IBC 2023 | 最新人工智能/深度学习模型趋势在超分辨率视频增强中的技术概述
超分辨率技术如何发展?这6篇ECCV 18论文带你一次尽览
在这篇文章中,亲历了ECCV 2018的机器学习研究员Tetianka Martyniuk挑选了6篇ECCV 2018接收论文,概述了超分辨率(Super-Resolution, SR)技术的未来发展趋势。
量子位
2018/10/26
3.3K0
CVPR 2021 Oral | GLEAN:基于隐式生成库的高倍率图像超分辨率
在 CVPR 2021 上, 南洋理工大学 S-Lab 和商汤科技等提出的隐式生成库(Generative Latent Bank), 针对高倍率图像超分辨中的质量和保真度问题提出了一个新的思路。GLEAN 通过利用预训练的 GAN 中丰富多样的先验知识,得到有效的超分效果。与现有方法相比,由 GLEAN 放大的图像在保真度和纹理真实度方面显示出明显的改进。
AI科技评论
2021/04/29
1.6K0
AIM2020 Real World SR(真实场景超分)
作者:薰风初入弦 知乎:https://zhuanlan.zhihu.com/p/295646725
AIWalker
2020/11/23
1.7K0
AIM2020 Real World SR(真实场景超分)
新视频超分算法来了:CVPR 2021 & NTIRE 2021 冠军
今天给大家带来的干货是新鲜出炉的 CVPR 2021,该文斩获 NTIRE 比赛冠军。目前代码已经 Merge 到 MMEditing 中,欢迎大家尝鲜。
AI科技评论
2021/04/29
1.5K0
卧剿,6万字!30个方向130篇!CVPR 2023 最全 AIGC 论文!一口气读完。
最近,扩散模型在图像生成方面取得了巨大的成功。然而,当涉及到布局生成时,由于图像通常包含多个物体的复杂场景,如何对全局布局图和每个详细对象进行强大的控制仍然是一个具有挑战性的任务。
公众号机器学习与AI生成创作
2023/08/22
4.4K1
卧剿,6万字!30个方向130篇!CVPR 2023 最全 AIGC 论文!一口气读完。
推荐阅读
CVPR 2024 | 图像超分、图像恢复汇总!用AIGC扩散模型diffusion来解决图像low-level任务的思路
4.3K0
CVPR 2023 | 去雨去噪去模糊,图像low-level任务,视觉AIGC系列
1.7K0
SFT-GAN、CSRCNN、CSNLN、HAN+、Config (f)…你都掌握了吗?一文总结超分辨率分析必备经典模型(三)
8290
ICCV 2023 | 9篇论文看扩散模型diffusion用于图像恢复任务:超分、恢复、增强、去模糊、去阴影
6.7K0
使用多尺度扩散实现超分辨率的频域细化
1K0
GAN的发展系列三(LapGAN、SRGAN)
1.7K0
CVPR2024 | CoSeR:连接图像与语言实现认知超分辨率
1.1K0
超分辨率 | 综述!使用深度学习来实现图像超分辨率
7K0
ICCV2021 RealVSR: ​业界首个移动端真实场景视频超分数据集。 附:深度思考
1.6K0
AI:你总要高清视频,它来了
2210
CVPR 2020 | 几篇GAN在low-level vision中的应用论文
1.3K0
CVPR 2025 Oral | DiffFNO:傅里叶神经算子助力扩散,开启任意尺度超分辨率新篇章
3290
【计算摄影】图像与视频超分辨,深度学习核心技术与展望
1.1K0
零基础 Pytorch 入门超分辨率
1K0
IBC 2023 | 最新人工智能/深度学习模型趋势在超分辨率视频增强中的技术概述
4230
超分辨率技术如何发展?这6篇ECCV 18论文带你一次尽览
3.3K0
CVPR 2021 Oral | GLEAN:基于隐式生成库的高倍率图像超分辨率
1.6K0
AIM2020 Real World SR(真实场景超分)
1.7K0
新视频超分算法来了:CVPR 2021 & NTIRE 2021 冠军
1.5K0
卧剿,6万字!30个方向130篇!CVPR 2023 最全 AIGC 论文!一口气读完。
4.4K1
相关推荐
CVPR 2024 | 图像超分、图像恢复汇总!用AIGC扩散模型diffusion来解决图像low-level任务的思路
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档