前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >整理了10个经典的Pandas数据查询案例

整理了10个经典的Pandas数据查询案例

作者头像
张俊红
发布2023-09-06 17:39:19
2260
发布2023-09-06 17:39:19
举报
文章被收录于专栏:张俊红

Pandasquery函数为我们提供了一种编写查询过滤条件更简单的方法,特别是在的查询条件很多的时候,在本文中整理了10个示例,掌握着10个实例你就可以轻松的使用query函数来解决任何查询的问题。

首先,将数据集导入Pandas

代码语言:javascript
复制
import pandas as pd
df = pd.read_csv("Dummy_Sales_Data_v1.csv")
df.head()

output

它是一个简单的9999 x 12数据集,是使用Faker创建的,我在最后也会提供本文的所有源代码。

在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。

PANDAS中的DATAFRAME.loc.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。而括号符号[]可以灵活地基于条件过滤数据帧,但是如果条件很多的话编写代码是繁琐且容易出错的。

Pandasquery()函数可以灵活地根据一个或多个条件提取子集,这些条件被写成表达式并且不需要考虑括号的嵌套。

在后端Pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤Pandas中的DataFrame,需要做的就是在查询函数中指定条件即可。

使用单一条件进行过滤

在单个条件下进行过滤时,在Query()函数中表达式仅包含一个条件。返回的输出将包含该表达式评估为真的所有行。

示例1

提取数量为95的所有行,因此逻辑形式中的条件可以写为

代码语言:javascript
复制
Quantity == 95

需要将条件写成字符串,即将其包装在双引号“”中。query函数的代码如下

代码语言:javascript
复制
df.query("Quantity == 95")

output

看起来很简单。它返回了数量为95的所有行。如果用一般查询的方式可以写成:

代码语言:javascript
复制
df [df [“Quantity”] == 95]

但是,如果想在同一列中再包含一个条件怎么办?

它在括号符号中又增加了一对方括号,如果是3个条件或者更多条件呢?那么他就变得难以管理。这就是query函数的优势了。

在多个条件过滤

一个或多个条件下过滤,query()的语法都保持不变

但是需要指定两个或多个条件进行过滤的方式

  • and:回在满足两个条件的所有记录
  • or:返回满足任意条件的所有记录

示例2

查询数量为95&单位价格为182 ,这里包含单价的列被称为UnitPrice(USD),因此,条件是

代码语言:javascript
复制
Quantity == 95
UnitPrice(USD) == 182

那么代码就是:

代码语言:javascript
复制
df.query("Quantity == 95 and UnitPrice(USD) == 182")

这个查询会报错:

但是为什么报错?

这是因为query()函数对列名有一些限制。列名称UnitPrice(USD)是无效的。我们要使用反引号把列名包含起来。

代码语言:javascript
复制
df.query("Quantity == 95 and `UnitPrice(USD)` == 182")

output

当两个条件满足时,只有3个记录。

或者我们直接将列名改成合理的格式:

代码语言:javascript
复制
df.rename(columns={'UnitPrice(USD)':'UnitPrice',
                  'Shipping_Cost(USD)':'Shipping_Cost',
                  'Delivery_Time(Days)':'Delivery_Time'},
        inplace=True)

这里就不需要使用反引号了:

代码语言:javascript
复制
df.query("Quantity == 95 and UnitPrice == 182")

示例3

我们现在只需要满足一个条件:

代码语言:javascript
复制
df.query("Quantity == 95 or UnitPrice == 182")

output

它返回满足两个条件中的任意一个条件的所有列。

我们也可以使用|替代or关键字。

示例4

假设想获得数量不等于95的所有行。最简单的答案是在条件之前使用not关键字或否定操作符〜

代码语言:javascript
复制
df.query("not(Quantity == 95)")

output

结果它包含数量不是95的所有行。

其实这里的条件不一定必须是相等运算符,可以从==!=><中选择,例如:

代码语言:javascript
复制
df.query("Quantity != 95")

文本过滤

对于文本列过滤时,条件是列名与字符串进行比较。

query()表达式已经是字符串。那么如何在另一个字符串中写一个字符串?将文本值包装在单个引号“”中,就可以了。

示例5

想获得即状态“未发货”所有记录,可以在query()表达式中写成如下的形式:

代码语言:javascript
复制
df.query("Status == 'Not Shipped'")

output

它返回所有记录,其中状态列包含值-“未发货”。

与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。

除此以外, Pandas中的query()方法还可以在查询表达式中使用数学计算。

查询中的简单数学计算

数学操作可以是列中的加,减,乘,除,甚至是列中值或者平方等,如下所示:

示例6

代码语言:javascript
复制
df.query("Shipping_Cost*2 < 50")

虽然这个二次方的操作没有任何的实际意义,但是我们的示例返回了所有达到要求的行。

我们还可以在一个或多个列上包含一些复杂的计算。

示例7

我们随便写一个比较复杂的公式:

代码语言:javascript
复制
df.query("Quantity**2 + Shipping_Cost**2 < 500")

output

如果使用最原始的[]的形式,这个公式的查询基本上没法完成,但是使用query()函数则变为简单的多。

除了数学操作,还在查询表达式中使用内置函数。

查询中的内置函数

Python内置函数,例如sort()abs()factorial()exp()等,也可以在查询表达式中使用。

示例8

查找单位价格平方根的超过15的行:

代码语言:javascript
复制
df.query("sqrt(UnitPrice) > 15")

output

query()函数还可以在同一查询表达式将函数和数学运算整合使用

示例9

代码语言:javascript
复制
df.query("sqrt(UnitPrice) < Shipping_Cost/2")

output

到目前为止,所有查询示例都是关于数值和文本列的。但是,query()的还不仅限于这些数据类型,对于日期时间值query()函数也可以非常灵活的过滤。

日期时间列过滤

使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns]

在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串,所以我们需要先进行转换:

代码语言:javascript
复制
df["OrderDate"] = pd.to_datetime(df["OrderDate"], format="%Y-%m-%d")

为了提取有关日期的有用信息并在query()需要使用dt提取器,dt是一种访问对象,用于提取日期时间,例如DateTime系列的属性。

示例10

获得八月份的所有记录

代码语言:javascript
复制
df.query("OrderDate.dt.month == 8")

output

所有记录都是八月份的。OrderDate.dt.month显示了如何使用dt访问者仅提取整个日期值的月份值。

如果提取2021年8月订购日为15或以上的所有订单,可以写成这样

代码语言:javascript
复制
df.query("OrderDate.dt.month == 8 and OrderDate.dt.year == 2021 and OrderDate.dt.day >=15")

output

dt很好用并且可以在同一列上结合了多个条件,但表达式似乎太长了。所以可以通过编写更非常简单的表达式来过滤:

代码语言:javascript
复制
df.query("OrderDate >= '2021-08-15' and OrderDate <= '2021-08-31'")

我们直接传递一个符合日期格式的字符串,它会自动的转换并且比较:

将上面的所有内容整合:

代码语言:javascript
复制
df.query("OrderDate >= '2021-08-15' and OrderDate <= '2021-08-31' and Status =
= 'Delivered'")

output

查询表达式包含了日期时间和文本列条件,它返回了符合查询表达式的所有记录

替换

上面的查询中都会生成一个新的df。这是因为:query()的第二个参数(inplace)默认false

与一般的Pandas提供的函数一样,inplace的默认值都是false,查询不会修改原始数据集。如果我们想覆盖原始df时,需要将inplace=true。但是一定要小心使用inplace=true,因为它会覆盖原始的数据。

总结

我希望在阅读本文后,您可以更频繁,流利地使用Pandas中的query()函数,因为它可以方便以过滤数据集。这些查询的函数我每天都会或多或少的使用。

本文的所有示例代码在这里:

https://github.com/17rsuraj/data-curious/blob/master/TowardsDataScience/pandas_query_deep_dive.ipynb

代码语言:javascript
复制
— 完 —:
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-03-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 俊红的数据分析之路 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 使用单一条件进行过滤
    • 示例1
    • 在多个条件过滤
      • 示例2
        • 示例3
          • 示例4
          • 文本过滤
            • 示例5
            • 查询中的简单数学计算
              • 示例6
                • 示例7
                • 查询中的内置函数
                  • 示例8
                    • 示例9
                      • 日期时间列过滤
                        • 示例10
                        • 替换
                        • 总结
                        领券
                        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档