前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >windows10搭建llama大模型

windows10搭建llama大模型

作者头像
逍遥壮士
发布2023-09-12 20:02:52
1.1K0
发布2023-09-12 20:02:52
举报
文章被收录于专栏:技术趋势

背景

随着人工时代的到来及日渐成熟,大模型已慢慢普及,可以为开发与生活提供一定的帮助及提升工作及生产效率。所以在新的时代对于开发者来说需要主动拥抱变化,主动成长。

LLAMA介绍

llama全称:Large Language Model Meta AI是由meta(原facebook)开源的一个聊天对话大模型。根据参数规模,Meta提供了70亿、130亿、330亿和650亿四种不同参数规模的LLaMA模型,并使用20种语言进行了训练。与现有最佳的大型语言模型相比,LLaMA模型在性能上具有竞争力。 官网:https://github.com/facebookresearch/llama

注意:本文是llama不是llama2,原理一致!

硬件要求

硬件名称

要求

备注

磁盘

单盘最少120g以上

模型很大的

内存

最少16g

最好32g

gpu

可以没有

当然最好有(要英伟达的)

安装软件

涉及软件版本

软件名称

版本

备注

anaconda3

conda 22.9.0

https://www.anaconda.com/

python

3.9.16

anaconda自带

peft

0.2.0

参数有效微调

sentencepiece

0.1.97

分词算法

transformers

4.29.2

下载有点久

git

2.40.1

torch

2.0.1

mingw

用window安装

protobuf

3.19.0

cuda

https://blog.csdn.net/zcs2632008/article/details/127025294

有gpu才需要安装

anaconda3安装

安装这个anaconda建议不要在c盘,除非你的c盘够大。

请参考:https://blog.csdn.net/scorn_/article/details/106591160?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522168601805516800197073452%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=168601805516800197073452&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-1-106591160-null-null.142^v88^control,239^v2^insert_chatgpt&utm_term=windows10%E5%AE%89%E8%A3%85anaconda3%E6%95%99%E7%A8%8B&spm=1018.2226.3001.4187

创建环境
代码语言:javascript
复制
conda create -n llama python=3.9.16
conda init
进入环境
代码语言:javascript
复制
conda info -e
conda activate llama
后面验证python

peft安装

代码语言:javascript
复制
pip install peft==0.2.0

transformers安装

注意:这个会很大~有点久~

代码语言:javascript
复制
conda install transformers==4.29.2

安装git

https://blog.csdn.net/dou3516/article/details/121740303

安装torch

代码语言:javascript
复制
pip install torch==2.0.1

安装mingw

win+r输入powershell
遇到禁止执行脚本问题:(如果没有异常请跳出这步)

参考

https://blog.csdn.net/weixin_43999496/article/details/115871373

配置权限
代码语言:javascript
复制
get-executionpolicy
set-executionpolicy RemoteSigned
然后输入Y
安装 mingw
代码语言:javascript
复制
 iex "& {$(irm get.scoop.sh)} -RunAsAdmin"

安装好后分别运行下面两个命令(添加库):

代码语言:javascript
复制
scoop bucket add extras
代码语言:javascript
复制
scoop bucket add main

输入命令安装mingw

代码语言:javascript
复制
scoop install mingw

安装:protobuf

代码语言:javascript
复制
pip install protobuf==3.19.0

项目配置

下载代码

需要下载两个模型, 一个是原版的LLaMA模型, 一个是扩充了中文的模型, 后续会进行一个合并模型的操作

  • 原版模型下载地址(要代理):https://ipfs.io/ipfs/Qmb9y5GCkTG7ZzbBWMu2BXwMkzyCKcUjtEKPpgdZ7GEFKm/
  • 备用:nyanko7/LLaMA-7B at main 下载不了的话,请关注【技术趋势】回复llama1获取。

创建文件夹

代码语言:javascript
复制
git lfs install

下载中文模型

代码语言:javascript
复制
git clone https://huggingface.co/ziqingyang/chinese-alpaca-lora-7b

补充Linux图:

下载羊驼模型(有点大)

先建一个文件夹:path_to_original_llama_root_dir

在里面再建一个7B文件夹并把tokenizer.model挪进来。

7B里面放的内容

最终需要的内容如下:

合并模型

下载:convert_llama_weights_to_hf.py

📎convert_llama_weights_to_hf.py

或将以下代码放到

代码语言:javascript
复制
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gc
import json
import math
import os
import shutil
import warnings

import torch

from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer


try:
    from transformers import LlamaTokenizerFast
except ImportError as e:
    warnings.warn(e)
    warnings.warn(
        "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
    )
    LlamaTokenizerFast = None

"""
Sample usage:

```
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
    --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
```

Thereafter, models can be loaded via:

```py
from transformers import LlamaForCausalLM, LlamaTokenizer

model = LlamaForCausalLM.from_pretrained("/output/path")
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
```

Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
"""

INTERMEDIATE_SIZE_MAP = {
    "7B": 11008,
    "13B": 13824,
    "30B": 17920,
    "65B": 22016,
}
NUM_SHARDS = {
    "7B": 1,
    "13B": 2,
    "30B": 4,
    "65B": 8,
}


def compute_intermediate_size(n):
    return int(math.ceil(n * 8 / 3) + 255) // 256 * 256


def read_json(path):
    with open(path, "r") as f:
        return json.load(f)


def write_json(text, path):
    with open(path, "w") as f:
        json.dump(text, f)


def write_model(model_path, input_base_path, model_size):
    os.makedirs(model_path, exist_ok=True)
    tmp_model_path = os.path.join(model_path, "tmp")
    os.makedirs(tmp_model_path, exist_ok=True)

    params = read_json(os.path.join(input_base_path, "params.json"))
    num_shards = NUM_SHARDS[model_size]
    n_layers = params["n_layers"]
    n_heads = params["n_heads"]
    n_heads_per_shard = n_heads // num_shards
    dim = params["dim"]
    dims_per_head = dim // n_heads
    base = 10000.0
    inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))

    # permute for sliced rotary
    def permute(w):
        return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)

    print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
    # Load weights
    if model_size == "7B":
        # Not sharded
        # (The sharded implementation would also work, but this is simpler.)
        loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
    else:
        # Sharded
        loaded = [
            torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
            for i in range(num_shards)
        ]
    param_count = 0
    index_dict = {"weight_map": {}}
    for layer_i in range(n_layers):
        filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
        if model_size == "7B":
            # Unsharded
            state_dict = {
                f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
                    loaded[f"layers.{layer_i}.attention.wq.weight"]
                ),
                f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
                    loaded[f"layers.{layer_i}.attention.wk.weight"]
                ),
                f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
                f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
                f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
                f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
                f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
                f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
                f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
            }
        else:
            # Sharded
            # Note that in the 13B checkpoint, not cloning the two following weights will result in the checkpoint
            # becoming 37GB instead of 26GB for some reason.
            state_dict = {
                f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
                    f"layers.{layer_i}.attention_norm.weight"
                ].clone(),
                f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
                    f"layers.{layer_i}.ffn_norm.weight"
                ].clone(),
            }
            state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
                torch.cat(
                    [
                        loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
                        for i in range(num_shards)
                    ],
                    dim=0,
                ).reshape(dim, dim)
            )
            state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
                torch.cat(
                    [
                        loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
                        for i in range(num_shards)
                    ],
                    dim=0,
                ).reshape(dim, dim)
            )
            state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
                [
                    loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
                    for i in range(num_shards)
                ],
                dim=0,
            ).reshape(dim, dim)

            state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
            )
            state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
            )
            state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
            )
            state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
            )

        state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
        for k, v in state_dict.items():
            index_dict["weight_map"][k] = filename
            param_count += v.numel()
        torch.save(state_dict, os.path.join(tmp_model_path, filename))

    filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
    if model_size == "7B":
        # Unsharded
        state_dict = {
            "model.embed_tokens.weight": loaded["tok_embeddings.weight"],
            "model.norm.weight": loaded["norm.weight"],
            "lm_head.weight": loaded["output.weight"],
        }
    else:
        state_dict = {
            "model.norm.weight": loaded[0]["norm.weight"],
            "model.embed_tokens.weight": torch.cat(
                [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
            ),
            "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
        }

    for k, v in state_dict.items():
        index_dict["weight_map"][k] = filename
        param_count += v.numel()
    torch.save(state_dict, os.path.join(tmp_model_path, filename))

    # Write configs
    index_dict["metadata"] = {"total_size": param_count * 2}
    write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))

    config = LlamaConfig(
        hidden_size=dim,
        intermediate_size=compute_intermediate_size(dim),
        num_attention_heads=params["n_heads"],
        num_hidden_layers=params["n_layers"],
        rms_norm_eps=params["norm_eps"],
    )
    config.save_pretrained(tmp_model_path)

    # Make space so we can load the model properly now.
    del state_dict
    del loaded
    gc.collect()

    print("Loading the checkpoint in a Llama model.")
    model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
    # Avoid saving this as part of the config.
    del model.config._name_or_path

    print("Saving in the Transformers format.")
    model.save_pretrained(model_path)
    shutil.rmtree(tmp_model_path)


def write_tokenizer(tokenizer_path, input_tokenizer_path):
    # Initialize the tokenizer based on the `spm` model
    tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
    print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
    tokenizer = tokenizer_class(input_tokenizer_path)
    tokenizer.save_pretrained(tokenizer_path)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--input_dir",
        help="Location of LLaMA weights, which contains tokenizer.model and model folders",
    )
    parser.add_argument(
        "--model_size",
        choices=["7B", "13B", "30B", "65B", "tokenizer_only"],
    )
    parser.add_argument(
        "--output_dir",
        help="Location to write HF model and tokenizer",
    )
    args = parser.parse_args()
    if args.model_size != "tokenizer_only":
        write_model(
            model_path=args.output_dir,
            input_base_path=os.path.join(args.input_dir, args.model_size),
            model_size=args.model_size,
        )
    spm_path = os.path.join(args.input_dir, "tokenizer.model")
    write_tokenizer(args.output_dir, spm_path)


if __name__ == "__main__":
    main()
执行格式转换命令
代码语言:javascript
复制
python convert_llama_weights_to_hf.py --input_dir path_to_original_llama_root_dir --model_size 7B --output_dir path_to_original_llama_hf_dir

注意:这一步有点久(很长时间)

会报的错:

会在目录中生成一个新目录:path_to_original_llama_hf_dir

执行模型合并命令

下载以下文件到llama目录

📎merge_llama_with_chinese_lora.py

执行合并模型命令
代码语言:javascript
复制
python merge_llama_with_chinese_lora.py --base_model path_to_original_llama_hf_dir --lora_model chinese-alpaca-lora-7b --output_dir path_to_output_dir

会生成一个目录:path_to_output_dir

下载模型

在llama目录下载代码如下:

代码语言:javascript
复制
git clone  http://github.com/ggerganov/llama.cpp

遇到报错

解决办法执行命令

代码语言:javascript
复制
git config --global --unset http.proxy

编译模型&转换格式

编译文件

注意:由于前端我是用powershell方式进行安装所以用第一种方式

代码语言:javascript
复制
#进入 llama.app
cd llama.app
#通过powershell安装的mingw进行编译
cmake . -G "MinGW Makefiles"
 #进行构建
cmake --build . --config Release

代码语言:javascript
复制
#进入 llama.app
cd llama.app
#创建 build文件夹
mkdir build
#进入build
cd build
#编译
cmake ..
#构建
cmake --build . --config Release

移动文件配置

在 llama.app 目录中新建目录 zh-models

将path_to_output_dir文件夹内的consolidated.00.pth和params.json文件放入上面格式中的位置

将path_to_output_dir文件夹内的tokenizer.model文件放在跟7B文件夹同级的位置

最终如下:

转换格式

注意:到 llama.cpp 目录

将 .pth模型权重转换为ggml的FP16格式

生成文件路径为zh-models/7B/ggml-model-f16.bin,执行命令如下:

代码语言:javascript
复制
python convert-pth-to-ggml.py zh-models/7B/ 1

生成结果

对FP16模型进行4-bit量化

执行命令:

代码语言:javascript
复制
D:\ai\llama\llama.cpp\bin\quantize.exe ./zh-models/7B/ggml-model-f16.bin ./zh-models/7B/ggml-model-q4_0.bin 2

生成量化模型文件路径为zh-models/7B/ggml-model-q4_0.bin

运行模型

代码语言:javascript
复制
cd D:\ai\llama\llama.cpp
D:\ai\llama\llama.cpp\bin\main.exe  -m zh-models/7B/ggml-model-q4_0.bin --color -f prompts/alpaca.txt -ins -c 2048 --temp 0.2 -n 256 --repeat_penalty 1.3

结果

最后

我知道很多同学可能觉得学习大模型需要懂python有一定的难度,当然我是建议先学习好一个语言后再去学习其它语言,其实按照我过来的经验,我觉得python或java都好,语言语法都差不多,只是一个工具只是看我们要不要用。毕竟有java后端的基础再去学python,本人两周基本就上手了。当然还是建议有一个主线,再展开,而不是出什么学什么,真没必要。但是对于技术来说要看价值及发展,有可能现在很流行的技术半年或几年后就过了。当然也不是完全说固步自封,一切看自身条件(阶段、能力、意愿、时间等)、社会发展、价值等。

参考文章:

https://zhuanlan.zhihu.com/p/617952293

https://zhuanlan.zhihu.com/p/632102048?utm_id=0

https://www.bilibili.com/read/cv24984542/

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-09-10 18:35,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 技术趋势 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 硬件要求
  • 安装软件
    • 涉及软件版本
      • anaconda3安装
      • peft安装
      • transformers安装
      • 安装git
      • 安装torch
      • 安装mingw
      • 安装:protobuf
  • 项目配置
    • 下载代码
      • 创建文件夹
      • 下载中文模型
      • 下载羊驼模型(有点大)
    • 合并模型
      • 下载模型
        • 编译模型&转换格式
          • 编译文件
          • 移动文件配置
          • 转换格式
        • 运行模型
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档