前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >一文读懂|内核顺序锁

一文读懂|内核顺序锁

作者头像
用户7686797
发布2023-09-14 15:53:40
3060
发布2023-09-14 15:53:40
举报
文章被收录于专栏:Linux内核那些事

Linux 内核有非常多的锁机制,如:自旋锁、读写锁、信号量和 RCU 锁等。本文介绍一种和读写锁比较相似的锁机制:顺序锁(seqlock)。

顺序锁与读写锁一样,都是针对多读少写且快速处理的锁机制。而顺序锁和读写锁的区别就在于:读写锁的读锁会阻塞写锁,而顺序锁的读锁不会阻塞写锁。

读锁原理

为了让读锁不阻塞写锁,读锁并不会真正进行上锁操作。那么读锁是如何避免在读取临界区数据时,数据被其他进程修改了?

为了解决这个问题,顺序锁使用了一种类似于版本号的机制:序号。序号是一个只增不减的计数器,可以从顺序锁对象的定义看出,如下代码所示:

代码语言:javascript
复制
typedef struct {
     struct seqcount seqcount; // 序号
     spinlock_t lock;          // 自旋锁,写锁上锁时使用
} seqlock_t;

在读取临界区数据前,首先需要调用 read_seqbegin() 函数来获取读锁,read_seqbegin() 函数的核心逻辑是读取顺序锁的序号。代码如下所示:

代码语言:javascript
复制
static inline unsigned read_seqbegin(const seqlock_t *sl)
{
    unsigned ret;

repeat:
    // 读取顺序锁的序号
    ret = sl->sequence;

    // 如果序号是单数,需要重新获取
    if (unlikely(ret & 1)) {
        ...
        goto repeat;
    }
    ...
    return ret;
}

从上面的代码可以看出,read_seqbegin() 函数只获取顺序锁的序号,并不会进行上锁操作,所以读锁并不会阻塞写锁。

注意:序号是单数时需要重新获取的原因,会在分析写锁实现原理时说明。

既然读锁并不会进行上锁操作,如果在读取临界区数据时,数据被修改了怎么办呢?答案就是:在退出临界区时,比较一下当前顺序锁的序号跟之前读取的序号是否一致。如果一致表示数据没有被修改,否则说明数据已经被修改。如果数据被修改了,那么需要重新读取临界区的数据。

比较序号是否一致可以使用 read_seqretry() 函数,所以读锁的正确用法如下代码所示:

代码语言:javascript
复制
do {
    // 获取顺序锁序号
    unsigned seq = read_seqbegin(&seqlock);
    // 读取临界区数据
    ...
} while (read_seqretry(&seqlock, seq)); // 对比序号是否一致?

read_seqretry() 函数的实现非常简单,如下所示:

代码语言:javascript
复制
static inline unsigned 
read_seqretry(const seqlock_t *sl, unsigned start)
{
    ...
    return sl->sequence != start;
}

从上面代码可以看出,read_seqretry() 函数只是简单比较当前序号与之前读取到的序号是否一致。

写锁原理

从上面的分析可知,读锁是通过对比前后序号是否一致来判断数据是否被修改的。那么序号在什么时候被修改呢?答案就是:获取写锁时。

获取写锁是通过 write_seqlock() 函数来实现的,其实现也比较简单,代码如下所示:

代码语言:javascript
复制
static inline void write_seqlock(seqlock_t *sl)
{
    spin_lock(&sl->lock);

    sl->sequence++;
    ...
}

write_seqlock() 函数首先会获取自旋锁(所以写锁与写锁之间是互斥的),然后对序号进行加一操作。所以,在修改临界区数据前,写锁先会增加序号的值,这样就会导致读锁前后两次获取的序号不一致。我们可以用下图来说明这种情况:

seqlock原理

可以看出,当在读临界区前后获取的序号值不一致时,就表示数据已经被修改,这时就需要重新读取被修改后的数据。

写锁解锁也很简单,代码如下:

代码语言:javascript
复制
static inline void write_sequnlock(seqlock_t *sl)
{
  ...
 s->sequence++;
 spin_unlock(&sl->lock);
}

解锁也需要对序号进行加一操作,然后释放自旋锁。

由于 write_seqlock() 函数与 write_sequnlock() 函数都会对序号进行加一操作,所以解锁后,序号的值必定为双数。

我们在分析读锁时看到,如果序号是单数时会重新获取序号,直到序号为双数为止。这是因为序号单数时,表示正在更新数据。此时读取临界区的值是没有意义的,所以需要等到更新完毕再读取。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-09-03 13:31,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Linux内核那些事 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 读锁原理
  • 写锁原理
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档