Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看?(二)

【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看?(二)

原创
作者头像
计算机魔术师
发布于 2023-09-21 02:53:48
发布于 2023-09-21 02:53:48
1750
举报
文章被收录于专栏:计算机魔术师计算机魔术师
在这里插入图片描述
在这里插入图片描述

🤵‍♂️ 个人主页: @AI_magician

📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。

👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍

🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)

在这里插入图片描述
在这里插入图片描述

<center >【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (二)

<center> 作者: 计算机魔术师

<center> 版本: 1.0 ( 2023.8.30 )


摘要: 本系列旨在普及那些深度学习路上必经的核心概念,文章内容都是博主用心学习收集所写,欢迎大家三联支持!本系列会一直更新,核心概念系列会一直更新!欢迎大家订阅

该文章收录专栏

[✨--- 《深入解析机器学习:从原理到应用的全面指南》 ---✨]

One-vs-One & One-vs-Rest

实际上,一对一(One-vs-One)策略和一对多(One-vs-Rest)策略在解释性方面没有明显的差异。这两种策略都是将多分类问题转化为多个二分类子问题,只是转化的方式不同。

在一对一策略中,每个子问题都是将一个类别与另一个类别进行区分。例如,对于一个有5个类别的问题,一对一策略将生成10个二分类子问题,每个子问题都是将一个类别与另一个类别进行区分。最后,通过投票或其他集成方法来确定最终的类别。

当使用一对一策略解决一个有5个类别的多分类问题时,我们可以通过以下步骤来确定最终的类别:

数据准备:假设我们有一个数据集,其中包含多个样本和它们对应的类别标签。每个样本都有一组特征,用于描述该样本。 子问题生成:使用一对一策略,我们将生成10个二分类子问题。对于每个子问题,我们选择一个类别作为正例,另一个类别作为负例。例如,我们可以选择将类别1与类别2进行区分,然后将类别1与类别3进行区分,以此类推,直到将类别4与类别5进行区分。 训练分类器:对于每个子问题,我们使用训练数据集来训练一个二分类器。这可以是任何二分类算法,如逻辑回归、支持向量机或决策树。训练过程中,我们使用与当前子问题相关的正例和负例样本。 预测:对于每个子问题,我们使用训练好的分类器来对测试样本进行预测。预测结果可以是二分类标签(正例或负例)或概率值。 投票或集成:在所有子问题的预测结果中,我们可以使用投票或其他集成方法来确定最终的类别。例如,我们可以对每个类别进行计数,然后选择得票最多的类别作为最终的类别。如果有多个类别得票数相同,可以使用其他规则来解决冲突,如选择概率值最高的类别

通过这个过程,我们可以将多分类问题转化为多个二分类子问题,并通过投票或集成方法来确定最终的类别。这种方法可以提供一种简单而有效的方式来解决多分类问题。

在一对多策略中,每个子问题都是将一个类别与其他所有类别进行区分。例如,对于一个有5个类别的问题,一对多策略将生成5个二分类子问题,每个子问题都是将一个类别与其他所有类别进行区分。最后,选择具有最高概率的类别作为最终的类别

从解释性的角度来看,一对一策略可能稍微更容易理解,因为每个子问题都是将一个类别与另一个类别进行区分。然而,一对多策略也可以提供类似的解释性,因为它仍然可以解释为将一个类别与其他所有类别进行区分。

总的来说,一对一策略和一对多策略在解释性方面没有明显的差异,选择哪种策略取决于具体的问题和数据集。

容忍度(tolerance)

机器学习中,容忍度(tolerance)是指模型对于训练数据中的噪声和不完美标记的容忍程度。它可以用来衡量模型对训练数据中的错误或异常值的敏感性

当我们使用算法来构建一个机器学习模型时,我们通常会给定一组输入特征(features)和相应的目标变量(target variable),并通过优化算法去拟合这些数据。然而,在实际应用中,训练数据可能会包含一些错误、异常值或者标签不准确的样本。

容忍度参数允许我们控制模型对这些噪声和不完美标记的反应程度。较高的容忍度意味着模型更加灵活,并能够适应更多种类的噪声;而较低的容忍度则表示模型更加严格地遵循原始数据,并试图尽可能准确地拟合每个样本。(这种情况需要每个样本都有着高质量)

例如,在支持向量机(Support Vector Machine)算法中,我们可以使用容忍度参数C来平衡正确分类样本数量与允许错误分类样本数量之间的权衡。较小的C值将导致更多错误分类被接受,使得决策边界具有更大弯曲性;而较大的C值将强制模型更加严格地进行分类,可能导致过拟合。(泛化效果

容忍度的选择需要根据具体问题和数据集来决定。如果训练数据中存在较多噪声或标记不准确的样本,可以使用较高的容忍度;如果希望模型尽量正确地拟合每个样本,则可以选择较低的容忍度

多输出分类 & 多输出多分类

多输出分类

多输出多分类问题在实际应用中非常常见。下面是一些具体的应用场景(一个样本分为多个小类别):

  1. 图像标注:给定一张图片,需要对其中的对象进行多个标签的分类,例如识别图像中的人、车辆和建筑等。
  2. 自然语言处理(NLP):在文本分类任务中,可能需要同时预测文档的主题、情感倾向和情绪状态等多个方面。
  3. 音频分析:音频信号可以被分为不同类别,比如音乐类型、说话者性别和语言等
  4. 多模态任务:当涉及到结合不同类型数据时,如图像与文本或视频与声音之间,在每个模态上都有一个或多个输出变量来完成任务。
  5. 医学影像诊断:医学领域中经常使用机器学习技术进行疾病诊断。在这种情况下,可能需要根据医学影像数据同时预测患者是否患有某种疾病以及该疾病所属的具体类型。

以上只是一些例子,并且实际应用场景非常广泛。对于这类问题,MLP等神经网络架构通常能够提供强大而灵活的建模能力,并且适合处理复杂关系和多个输出变量之间的相关性。

希望这些具体的应用场景能够帮助你理解多输出多分类问题在实际中的应用!

多输出多分类

多分类多输出问题在现实生活中有很多应用场景。以下是一些常见的例子(就是在大分类后的情况下再次通过多输出小分类):

  1. 图像识别:在图像识别任务中,我们可能需要将输入图像分为多个类别,并同时预测每个类别的相关属性。例如,在人脸识别中,我们可能需要将人脸进行分类(男性/女性、年龄等),并预测额外的属性(眼镜、帽子等)
  2. 自然语言处理:在自然语言处理任务中,我们经常面临着将文本分类到不同的类别,并根据需求生成相应的输出。例如,在情感分析中,我们可以使用模型对文本进行情感分类(积极/消极),并进一步生成对特定方面或主题的评论。
  3. 多标签文本分类:某些情况下,一个样本可能属于多个标签类别。比如新闻文章可以被归入多个主题(政治、体育、娱乐等)。这种情况下就需要使用多标签分类算法来解决此问题。
  4. 推荐系统:推荐系统通常会针对用户提供与其兴趣和偏好相关联的项目或商品。这涉及到将项目划分到不同的类别,并根据用户历史数据进行个性化推荐。
总之,当涉及到同时对多个输出进行分类或预测时,多分类多输出问题就变得非常有用。这种类型的问题可以帮助我们更好地理解和处理复杂的现实世界数据。
在这里插入图片描述
在这里插入图片描述

我正在参与2023腾讯技术创作特训营第二期有奖征文,瓜分万元奖池和键盘手表

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
机器学习之SVM支持向量机
支持向量机(Support Vector Machine,SVM)是一种二分类模型,其基本思想是在特征空间中找到一个最优的超平面,使得正负样本点到该超平面的距离最大化,从而实现对样本的分类。
叶茂林
2023/07/30
3640
机器学习之SVM支持向量机
机器学习13:多分类学习
有些情况下,二分类学习方法可以推广到多分类问题中;但是多数情况下需要基于一定的策略,利用二分类学习器解决多分类问题。
用户5473628
2019/08/08
6.5K0
机器学习 学习笔记(7)多分类学习与类别不平衡
现实中常遇到多分类学习任务,有些二分类学习方法可以直接推广到多分类,但在更多情况下,是基于一些基本策略,利用二分类学习器来解决多分类问题。
2018/09/03
3K0
机器学习 学习笔记(7)多分类学习与类别不平衡
机器学习中最常见的四种分类模型
举一个简单易懂的例子:将电子邮件分类为“ 垃圾邮件 ”或“ 非垃圾邮件”(二分类的典型特征“非此即彼”,关于二分类,后文会涉及)。
派大星的数据屋
2022/04/03
4.6K0
机器学习中最常见的四种分类模型
独家 | 机器学习中的四种分类任务(附代码)
分类是一项需要使用机器学习算法去学习如何根据问题域为示例分配类标签的任务。一个简单易懂的例子是将电子邮件分为“垃圾邮件”或“非垃圾邮件”。
数据派THU
2020/06/01
1.5K0
独家 | 机器学习中的四种分类任务(附代码)
数学建模--支持向量机
支持向量机(Support Vector Machine,SVM)是一种在机器学习领域广泛应用的监督学习算法,主要用于分类和回归任务。其核心思想是通过找到一个最优的超平面来实现数据的有效划分。
用户11315985
2024/10/16
2030
数学建模--支持向量机
【机器学习 | 分类指标大全】全面解析分类评估指标:从准确率到AUC,多分类问题也不在话下, 确定不来看看?
🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)
计算机魔术师
2023/09/24
1.1K0
机器学习中最常见的四种分类模型
举一个简单易懂的例子:将电子邮件分类为“ 垃圾邮件 ”或“ 非垃圾邮件”(二分类的典型特征“非此即彼”,关于二分类,后文会涉及)。
全栈程序员站长
2022/11/10
4K0
机器学习中最常见的四种分类模型
图像识别之美食挑战赛 Ⅱ:由二分类到多分类,增加的不止是一点复杂度......
相较第一场美食识别挑战赛,这次推出的比赛 2.0 难度略有增加。除了食材种类的成倍增加之外,四种食材的图片辨识度也有所降低。这对于专注于图像识别的开发者而言,相信是非常值得尝试的一次挑战!
AI研习社
2020/02/21
4900
从零开始学机器学习——初探分类器
首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns
努力的小雨
2024/10/03
3010
《机器学习》学习笔记(三)——线性模型
分类的核心就是求出一条直线w的参数,使得直线上方和直线下方分别属于两类不同的样本
荣仔_最靓的仔
2021/02/02
1.7K0
《机器学习》学习笔记(三)——线性模型
数据挖掘知识点串烧:逻辑回归
关于作者:DD-Kylin,一名喜欢编程与机器学习的统计学学生,勤学好问,乐于钻研,期待跟大家多多探讨机器学习的相关内容~
木东居士
2019/08/28
6810
数据挖掘知识点串烧:逻辑回归
scikit-learn工具包中分类模型predict_proba、predict、decision_function用法详解「建议收藏」
在使用sklearn训练完分类模型后,下一步就是要验证一下模型的预测结果,对于分类模型,sklearn中通常提供了predict_proba、predict、decision_function三种方法来展示模型对于输入样本的评判结果。
全栈程序员站长
2022/11/08
2.7K0
scikit-learn工具包中分类模型predict_proba、predict、decision_function用法详解「建议收藏」
【干货】22道机器学习常见面试题目
有监督学习:对具有概念标记(分类)的训练样本进行学习,以尽可能对训练样本集外的数据进行标记(分类)预测。这里,所有的标记(分类)是已知的。因此,训练样本的岐义性低。
石晓文
2019/11/12
7080
入门 | 从原理到应用:简述Logistic回归算法
作者:Niklas Donges 机器之心编译 参与:乾树、李泽南 Logistic 回归是二分类任务中最常用的机器学习算法之一。它的设计思路简单,易于实现,可以用作性能基准,且在很多任务中都表现很好
机器之心
2018/06/11
1.3K0
logistics判别与线性模型中的4个问题
之前说过,机器学习的两大任务是回归和分类,上章的线性回归模型适合进行回归分析,例如预测房价,但是当输出的结果为离散值时,线性回归模型就不适用了。我们的任务是:将回归分析中的实数值转化为离散值或者对于离散值的概率。
double
2018/07/31
5130
一文读懂机器学习分类模型评价指标
解决一个机器学习问题都是从问题建模开始,首先需要收集问题的资料,深入理解问题,然后将问题抽象成机器可预测的问题。在这个过程中要明确业务指标和模型预测目标,根据预测目标选择适当指标用于模型评估。接着从原始数据中选择最相关的样本子集用于模型训练,并对样本子集划分训练集和测试集,应用交叉验证的方法对模型进行选择和评估。
Ai学习的老章
2019/07/17
2.7K0
一文读懂机器学习分类模型评价指标
机器学习中的逻辑回归
逻辑回归是机器学习领域中一种用于二分类问题的常用算法。尽管其名字中包含"回归"一词,但实际上,逻辑回归是一种分类算法,用于估计输入特征与某个事件发生的概率之间的关系。本文将深入讲解逻辑回归的原理、实际应用以及使用 Python 进行实现的代码。
GeekLiHua
2025/01/21
2100
【机器学习】对数线性模型之Logistic回归、SoftMax回归和最大熵模型
本文介绍对数线性分类模型,在线性模型的基础上通过复合函数(sigmoid,softmax,entropy )将其映射到概率区间,使用对数损失构建目标函数。首先以概率的方式解释了logistic回归为什么使用sigmoid函数和对数损失,然后将二分类扩展到多分类,导出sigmoid函数的高维形式softmax函数对应softmax回归,最后最大熵模型可以看作是softmax回归的离散型版本,logistic回归和softmax回归处理数值型分类问题,最大熵模型对应处理离散型分类问题。
yuquanle
2019/11/04
1.9K0
机器学习入门 9-8 OvR与OvO
本系列是《玩转机器学习教程》一个整理的视频笔记。本小节主要介绍能够将二分类算法解决多分类任务的两种方法OvR和OvO,并通过sklearn封装的逻辑回归实现OvR和OvO,最后使用sklearn实现通用二分类算法的OvR和OvO。
触摸壹缕阳光
2020/03/26
4.2K0
机器学习入门 9-8 OvR与OvO
推荐阅读
相关推荐
机器学习之SVM支持向量机
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档