装饰者模式、装饰器模式、Wrapper、Decorator
装饰模式是一种结构型设计模式, 允许你通过将对象放入包含行为的特殊封装对象中来为原对象绑定新的行为。
假设你正在开发一个提供通知功能的库, 其他程序可使用它向用户发送关于重要事件的通知。
库的最初版本基于 通知器
Notifier类, 其中只有很少的几个成员变量, 一个构造函数和一个 send
发送方法。 该方法可以接收来自客户端的消息参数, 并将该消息发送给一系列的邮箱, 邮箱列表则是通过构造函数传递给通知器的。 作为客户端的第三方程序仅会创建和配置通知器对象一次, 然后在有重要事件发生时对其进行调用。
程序可以使用通知器类向预定义的邮箱发送重要事件通知。
此后某个时刻, 你会发现库的用户希望使用除邮件通知之外的功能。 许多用户会希望接收关于紧急事件的手机短信, 还有些用户希望在微信上接收消息, 而公司用户则希望在 QQ 上接收消息。
每种通知类型都将作为通知器的一个子类得以实现。
这有什么难的呢? 首先扩展 通知器
类, 然后在新的子类中加入额外的通知方法。 现在客户端要对所需通知形式的对应类进行初始化, 然后使用该类发送后续所有的通知消息。
但是很快有人会问: “为什么不同时使用多种通知形式呢? 如果房子着火了, 你大概会想在所有渠道中都收到相同的消息吧。”
你可以尝试创建一个特殊子类来将多种通知方法组合在一起以解决该问题。 但这种方式会使得代码量迅速膨胀, 不仅仅是程序库代码, 客户端代码也会如此。
子类组合数量爆炸。
你必须找到其他方法来规划通知类的结构, 否则它们的数量会在不经意之间打破吉尼斯纪录。
当你需要更改一个对象的行为时, 第一个跳入脑海的想法就是扩展它所属的类。 但是, 你不能忽视继承可能引发的几个严重问题。
其中一种方法是用聚合或组合 , 而不是继承。 两者的工作方式几乎一模一样: 一个对象包含指向另一个对象的引用, 并将部分工作委派给引用对象; 继承中的对象则继承了父类的行为, 它们自己能够完成这些工作。
你可以使用这个新方法来轻松替换各种连接的 “小帮手” 对象, 从而能在运行时改变容器的行为。 一个对象可以使用多个类的行为, 包含多个指向其他对象的引用, 并将各种工作委派给引用对象。 聚合 (或组合) 组合是许多设计模式背后的关键原则 (包括装饰在内)。 记住这一点后, 让我们继续关于模式的讨论。
继承与聚合的对比
封装器是装饰模式的别称, 这个称谓明确地表达了该模式的主要思想。 “封装器” 是一个能与其他 “目标” 对象连接的对象。 封装器包含与目标对象相同的一系列方法, 它会将所有接收到的请求委派给目标对象。 但是, 封装器可以在将请求委派给目标前后对其进行处理, 所以可能会改变最终结果。
那么什么时候一个简单的封装器可以被称为是真正的装饰呢? 正如之前提到的, 封装器实现了与其封装对象相同的接口。 因此从客户端的角度来看, 这些对象是完全一样的。 封装器中的引用成员变量可以是遵循相同接口的任意对象。 这使得你可以将一个对象放入多个封装器中, 并在对象中添加所有这些封装器的组合行为。
比如在消息通知示例中, 我们可以将简单邮件通知行为放在基类 通知器
中, 但将所有其他通知方法放入装饰中。
将各种通知方法放入装饰。
客户端代码必须将基础通知器放入一系列自己所需的装饰中。 因此最后的对象将形成一个栈结构。
程序可以配置由通知装饰构成的复杂栈。
实际与客户端进行交互的对象将是最后一个进入栈中的装饰对象。 由于所有的装饰都实现了与通知基类相同的接口, 客户端的其他代码并不在意自己到底是与 “纯粹” 的通知器对象, 还是与装饰后的通知器对象进行交互。
我们可以使用相同方法来完成其他行为 (例如设置消息格式或者创建接收人列表)。 只要所有装饰都遵循相同的接口, 客户端就可以使用任意自定义的装饰来装饰对象。
穿上多件衣服将获得组合性的效果。
穿衣服是使用装饰的一个例子。 觉得冷时, 你可以穿一件毛衣。 如果穿毛衣还觉得冷, 你可以再套上一件夹克。 如果遇到下雨, 你还可以再穿一件雨衣。 所有这些衣物都 “扩展” 了你的基本行为, 但它们并不是你的一部分, 如果你不再需要某件衣物, 可以方便地随时脱掉。
在本例中, 装饰模式能够对敏感数据进行压缩和加密, 从而将数据从使用数据的代码中独立出来。
加密和压缩装饰的示例。
程序使用一对装饰来封装数据源对象。 这两个封装器都改变了从磁盘读写数据的方式:
装饰和数据源类实现同一接口, 从而能在客户端代码中相互替换。
如果你希望在无需修改代码的情况下即可使用对象, 且希望在运行时为对象新增额外的行为, 可以使用装饰模式。
装饰能将业务逻辑组织为层次结构, 你可为各层创建一个装饰, 在运行时将各种不同逻辑组合成对象。 由于这些对象都遵循通用接口, 客户端代码能以相同的方式使用这些对象。
如果用继承来扩展对象行为的方案难以实现或者根本不可行, 你可以使用该模式。
许多编程语言使用 final
最终关键字来限制对某个类的进一步扩展。 复用最终类已有行为的唯一方法是使用装饰模式: 用封装器对其进行封装。
装饰是一种结构设计模式, 允许你通过将对象放入特殊封装对象中来为原对象增加新的行为。
由于目标对象和装饰器遵循同一接口, 因此你可用装饰来对对象进行无限次的封装。 结果对象将获得所有封装器叠加而来的行为。
package main
type IPizza interface {
getPrice() int
}
package main
type VeggieMania struct{}
func (p *VeggieMania) getPrice() int {
return 15
}
package main
type TomatoTopping struct {
pizza IPizza
}
func (c *TomatoTopping) getPrice() int {
pizzaPrice := c.pizza.getPrice()
return pizzaPrice + 7
}
package main
type CheeseTopping struct {
pizza IPizza
}
func (c *CheeseTopping) getPrice() int {
pizzaPrice := c.pizza.getPrice()
return pizzaPrice + 10
}
package main
import "fmt"
func main() {
pizza := &VeggieMania{}
pizzaWithCheese := &CheeseTopping{pizza: pizza}
pizzaWithCheeseAndTomato := &TomatoTopping{
pizza: pizzaWithCheese,
}
fmt.Printf("Price of veggeMania with tomato and cheese topping is %d\n", pizzaWithCheeseAndTomato.getPrice())
}