前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >0基础学习PyFlink——事件时间和运行时间的窗口

0基础学习PyFlink——事件时间和运行时间的窗口

作者头像
方亮
发布2023-11-02 09:19:58
4520
发布2023-11-02 09:19:58
举报
文章被收录于专栏:方亮
《0基础学习PyFlink——时间滚动窗口(Tumbling Time Windows)》一文中,我们使用的是运行时间(Tumbling ProcessingTimeWindows)作为窗口的参考时间:
代码语言:javascript
复制
    reduced=keyed.window(TumblingProcessingTimeWindows.of(Time.milliseconds(2))) \
                    .apply(SumWindowFunction(),
                        Types.TUPLE([Types.STRING(), Types.INT()]))

而得到的结果也是不稳定的。

这是因为每次运行时,CPU等系统资源的繁忙程度是不一样的,这就影响了最后的运行结果。

为了让结果稳定,我们可以不依赖运行时间(ProcessingTime),而使用不依赖于运行环境,只依赖于数据的事件时间(EventTime)。

一般,我们需要大数据处理的数据,往往存在一个字段用于标志该条数据的“顺序”。这个信息可以是单调递增的ID,也可以是不唯一的时间戳。我们可以将这类信息看做事件发生的时间。

那如何让输入的数据中的“事件时间”参与到窗口时长的计算中呢?这儿就要引入Watermark(水印)的概念。

假如我们把数据看成一张纸上的内容,水印则是这张纸的背景。它并不影响纸上内容的表达,只是系统要用它来做更多的事情。

将数据中表达“顺序”的数据转换成“时间”,我们可以使用水印单调递增时间戳分配器

定制策略

代码语言:javascript
复制
class ElementTimestampAssigner(TimestampAssigner):
    def extract_timestamp(self, value, record_timestamp)-> int:
        return int(value[1])
 ……       
    # define the watermark strategy
    watermark_strategy = WatermarkStrategy.for_monotonous_timestamps() \
        .with_timestamp_assigner(ElementTimestampAssigner())

for_monotonous_timestamps会分配一个水印单调递增时间戳分配器,然后使用with_timestamp_assigner告知输入数据中“顺序”字段的值。这样系统就会根据这个字段的值生成一个单调递增的时间戳。这个时间戳相对顺序就和输入数据一样,是稳定的。

比如上图中,会分别用2,1,4,3……来计算时间戳。

运行策略

然后对原始数据使用该策略,这样source_with_wartermarks中的数据就包含了时间戳。

代码语言:javascript
复制
source_with_wartermarks=source.assign_timestamps_and_watermarks(watermark_strategy)

Reduce

这次我们使用TumblingEventTimeWindows,即事件时间(EventTime)窗口,而不是运行时间(ProcessingTime)窗口。

代码语言:javascript
复制
     # keying
    keyed=source_with_wartermarks.key_by(lambda i: i[0]) 
    
    # reducing
    reduced=keyed.window(TumblingEventTimeWindows.of(Time.milliseconds(2))) \
                    .apply(SumWindowFunction(),
                        Types.TUPLE([Types.STRING(), Types.INT()]))

(‘E’, 1) TimeWindow(start=0, end=2) (‘E’, 3) (‘E’, 2) TimeWindow(start=2, end=4) (‘E’, 4) (‘E’, 5) TimeWindow(start=4, end=6) (‘E’, 6) (‘E’, 7) TimeWindow(start=6, end=8) (‘E’, 8) (‘E’, 9) TimeWindow(start=8, end=10) (‘E’, 10) TimeWindow(start=10, end=12) (E,1) (E,2) (E,2) (E,2) (E,2) (E,1)

多运行几次,结果是稳定输出的。

我们再多关注下TimeWindow中的start和end,它们是不重叠的、步长为2、左闭右开的区间。这个符合滚动窗口特性。

完整代码

代码语言:javascript
复制
from typing import Iterable

from pyflink.common import Types, Time, WatermarkStrategy
from pyflink.datastream import StreamExecutionEnvironment, RuntimeExecutionMode, WindowFunction
from pyflink.datastream.window import TumblingEventTimeWindows, TimeWindow, TumblingProcessingTimeWindows, SlidingProcessingTimeWindows
from pyflink.common.watermark_strategy import TimestampAssigner

class ElementTimestampAssigner(TimestampAssigner):
    def extract_timestamp(self, value, record_timestamp)-> int:
        return int(value[1])
   
class SumWindowFunction(WindowFunction[tuple, tuple, str, TimeWindow]):
    def apply(self, key: str, window: TimeWindow, inputs: Iterable[tuple]):
        print(*inputs, window)
        return [(key,  len([e for e in inputs]))]


word_count_data = [("E",3),("E",1),("E",4),("E",2),("E",6),("E",5),("E",7),("E",8),("E",9),("E",10)]

def word_count():
    env = StreamExecutionEnvironment.get_execution_environment()
    env.set_runtime_mode(RuntimeExecutionMode.STREAMING)
    # write all the data to one file
    env.set_parallelism(1)

    source_type_info = Types.TUPLE([Types.STRING(), Types.INT()])
    # define the source
    # mappging
    source = env.from_collection(word_count_data, source_type_info)
    # source.print()

     # define the watermark strategy
    watermark_strategy = WatermarkStrategy.for_monotonous_timestamps() \
        .with_timestamp_assigner(ElementTimestampAssigner())
    
    source_with_wartermarks=source.assign_timestamps_and_watermarks(watermark_strategy)
        
     # keying
    keyed=source_with_wartermarks.key_by(lambda i: i[0]) 
    
    # reducing
    reduced=keyed.window(TumblingEventTimeWindows.of(Time.milliseconds(2))) \
                    .apply(SumWindowFunction(),
                        Types.TUPLE([Types.STRING(), Types.INT()]))
        
    # # define the sink
    reduced.print()

    # submit for execution
    env.execute()

if __name__ == '__main__':
    word_count()

滑动窗口案例

代码语言:javascript
复制
from typing import Iterable

from pyflink.common import Types, Time, WatermarkStrategy
from pyflink.datastream import StreamExecutionEnvironment, RuntimeExecutionMode, WindowFunction
from pyflink.datastream.window import SlidingEventTimeWindows, TimeWindow
from pyflink.common.watermark_strategy import TimestampAssigner

class ElementTimestampAssigner(TimestampAssigner):
    def extract_timestamp(self, value, record_timestamp)-> int:
        return int(value[1])
   
class SumWindowFunction(WindowFunction[tuple, tuple, str, TimeWindow]):
    def apply(self, key: str, window: TimeWindow, inputs: Iterable[tuple]):
        print(*inputs, window)
        return [(key,  len([e for e in inputs]))]


word_count_data = [("E",3),("E",1),("E",4),("E",2),("E",6),("E",5),("E",7),("E",8),("E",9),("E",10)]

def word_count():
    env = StreamExecutionEnvironment.get_execution_environment()
    env.set_runtime_mode(RuntimeExecutionMode.STREAMING)
    # write all the data to one file
    env.set_parallelism(1)

    source_type_info = Types.TUPLE([Types.STRING(), Types.INT()])
    # define the source
    # mappging
    source = env.from_collection(word_count_data, source_type_info)
    # source.print()
    
    # define the watermark strategy
    watermark_strategy = WatermarkStrategy.for_monotonous_timestamps() \
        .with_timestamp_assigner(ElementTimestampAssigner())
    
    source_with_wartermarks=source.assign_timestamps_and_watermarks(watermark_strategy)
        
     # keying
    keyed=source_with_wartermarks.key_by(lambda i: i[0]) 
    
    # reducing
    reduced=keyed.window(SlidingEventTimeWindows.of(Time.milliseconds(2), Time.milliseconds(1))) \
                    .apply(SumWindowFunction(),
                        Types.TUPLE([Types.STRING(), Types.INT()]))
        
    # # define the sink
    reduced.print()

    # submit for execution
    env.execute()

if __name__ == '__main__':
    word_count()

(‘E’, 1) TimeWindow(start=0, end=2) (‘E’, 1) (‘E’, 2) TimeWindow(start=1, end=3) (‘E’, 3) (‘E’, 2) TimeWindow(start=2, end=4) (‘E’, 3) (‘E’, 4) TimeWindow(start=3, end=5) (‘E’, 4) (‘E’, 5) TimeWindow(start=4, end=6) (‘E’, 6) (‘E’, 5) TimeWindow(start=5, end=7) (‘E’, 6) (‘E’, 7) TimeWindow(start=6, end=8) (‘E’, 7) (‘E’, 8) TimeWindow(start=7, end=9) (‘E’, 8) (‘E’, 9) TimeWindow(start=8, end=10) (‘E’, 9) (‘E’, 10) TimeWindow(start=9, end=11) (‘E’, 10) TimeWindow(start=10, end=12) (E,1) (E,2) (E,2) (E,2) (E,2) (E,2) (E,2) (E,2) (E,2) (E,2) (E,1)

通过TimeWindow的信息,我们看到这是一个步长为1、长度为2左闭右开的窗口。这个符合滑动窗口特点。

参考资料

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-11-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 在 《0基础学习PyFlink——时间滚动窗口(Tumbling Time Windows)》一文中,我们使用的是运行时间(Tumbling ProcessingTimeWindows)作为窗口的参考时间:
  • 定制策略
  • 运行策略
  • Reduce
  • 完整代码
  • 滑动窗口案例
  • 参考资料
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档