前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >算力芯片,如何突围?

算力芯片,如何突围?

作者头像
chaobowx
发布2023-11-16 17:13:22
3150
发布2023-11-16 17:13:22
举报
文章被收录于专栏:软硬件融合

编者按

作为技术类的公众号,今天这篇文章,我们聊点技术之外的一些更宏观的发展话题:)

最近跟一个朋友,交流了一些不那么“纯技术”的话题:后进如何赶超先进?在交流的过程中,也引发了我对技术发展的一些更深层次的思考。

关于后进赶超先进,网上有太多的文章和视频。作为常年从事计算机算力芯片相关工作的我,今天就从算力芯片这个视角出发,谈谈对国内算力芯片如何实现突围的个人的一些看法。


1 成熟赛道,后进赶超先进,很难

1.1 CPU的江湖恩仇

上世纪70年代,Intel发明了CPU。通过对CPU的持续投入,Intel逐渐获得了市场的优势,并逐渐构建起了自己的x86生态,这包括外围的硬件合作伙伴、BIOS等固件开发、操作系统软件、工具链以及应用软件生态等等。

RISC是一个失败的例子。X86是CISC架构,随着CISC指令的复杂度越来越高,越来越难以控制,RISC架构逐渐兴起。RISC架构处理器提倡简化指令集设计、固定指令长度、统一指令编码格式、加速常用指令。RISC架构成为很多处理器的首选,并且也成为了许多计算机教材的经典CPU设计案例。但即便如此,在市场竞争上,RISC架构仍然输给了CISC。

安腾是Intel自己的一个失败的例子。安腾是Intel于2001年推出的64位架构的CPU处理器。虽然是Intel的亲儿子,虽然是功能强大的64位CPU架构,虽然安腾的架构和微架构设计非常优秀,但因为安腾和x86的不兼容,完全一个新的生态,也不可避免的走向了失败。最后成就了AMD64的成功。

ARM的成功,更多源于商业模式。最开始,ARM自研的处理器性能都非常差,其自研的处理器性能通常是低于一些巨头客户自研的ARM架构CPU。但因为ARM是一个中立的CPU架构和IP供应商,很多巨头愿意扶持着它向前迈进。最后在智能手机时代,ARM大获成功。有了资金实力之后,ARM后续CPU的性能才逐渐赶上并且部分超越了自己的巨头客户。

RISC-v,后起之秀,明日之星,未来可能的成功也是依赖于更优的商业模式。跟ARM当年的处境类似,目前的RISCv性能和生态都要弱于x86和ARM,但因为更优的商业模式(完全开源开放的,并且得到广泛共识的免费的处理器),其发展也是相当迅猛。

1.2 NVIDIA,从十年磨一剑到市值万亿

传统的GPU是图形加速卡,本质上是众多各种领域各种场景加速卡中的一员。除了GPU之外,其他众多的各类加速卡,几乎没有成功的案例。GPU之所以最终成功,来自于00年代NVIDIA的转型:一方面,是GPU从传统的图像加速卡,改造成面向并行计算的GPGPU;此外,为了降低开发的门槛,把更多的资源投向了CUDA,并且对外宣称自己是一家软件公司。

即便策略正确,最终的成功验证也差不多是十年之后。CUDA的最早期版本是在2005年前后发布的,直到2012年深度学习的崛起,GPU才开始真正脱颖而出,也直到2018年大模型兴起,以及2013年ChatGPT的火爆,才把NVIDIA推上了最高的神坛。

1.3 简单总结

经常有企业喊出口号是“要做中国的xxx”,但“学我者生,像我者死”,芯片是一个国际化的市场,全球竞争,这样亦步亦趋的学习巨头企业的做法,无异于“邯郸学步”。

在成熟的赛道,后进如果靠模仿先进前进,那必然无法成功。后进需要有差异化,有创新,有优势,才有可能成功。并且,后进要想成功,其难度远高于先进者当年的难度。

2 技术的变革,是后进赶超先进的关键时机

国产新能源汽车,是后进赶超先进的经典案例。据中国汽车工业协会整理的海关总署数据显示,2023年上半年,汽车整车出口234.1万辆,同比增长76.9%;1~7月,汽车出口总值3837.3亿元,增长118.5%。中国汽车出口首次超过日本,跃居世界首位。新能源汽车是中国汽车出口的核心增长点。2023年1~6月出口新能源车80万辆,同比增长105%。

在成熟赛道,先进具有技术优势、市场优势、专利优势、品牌优势等等,后进赶超先进很难。但如果是技术的变革期,后进就可以在新的技术领域提前布局,让双方站在同一个起跑线,以此来获得“公平”竞技的机会,从而有可能实现超越。国产汽车,就是抓住了新能源和智能汽车这一波浪潮,迅速地达到了汽车出口量全球第一。

那么,芯片的变革机会在哪里?

3 AGI大模型的挑战

2023年初的AI大模型,“不约而同”的参数规模停留在千亿级,为什么?

核心的原因在于,这是目前的GPU计算集群所能支撑的算力上限:

  • 一方面,单芯片算力已经瓶颈,算力增长极度缓慢。
  • 另一方面,受限于目前的服务器以CPU为中心的架构约束,以及网络的交互效率所限,集群规模也已经达到了上限。
  • 还有一个很重要的原因,就是算力的建设和运营成本,也已经达到了一个天文数字。

目前CPU性能早已瓶颈,GPU性能即将见顶并且成本高昂,而AI芯片太过于专用,不适用于快速变化的模型算法/算子和业务逻辑。

如何解决?我们也可以给一个简单的答案:

  • 一方面,持续不断的Scale up,通过更多的处理器内聚,数量级的提升单芯片的性能;
  • 另一方面,持续不断地增强芯片的内部交互(打破已有的以CPU为中心的架构)和外部交互(增强高性能网络)。数量级的提升集群中服务器的数量。
  • 此外,大芯片需要通用。能否实现足够的通用性,是大芯片能够大规模落地的最重要因素。
  • 还有一个很重要的,要通过一些机制,数量级的降低算力的成本。

4 芯片工艺的快速进步

工艺持续进步,Chiplet先进封装也越来越成熟。从2D的工艺到3D的封装再到Chiplet的4D封装,芯片的底层实现技术仍在快速发展。

目前的大算力芯片,通常在500亿晶体管左右。Intel的规划是在2030年,达到1万亿晶体管。这意味着,相比目前的芯片,计算规模再提升20倍。

如此大规模的晶体管资源,我们该如何更好地利用?

5 算力芯片变革的历史机遇

5.1 系统架构创新

一方面是需求牵引,一方面是工艺支撑,两方面的因素,都需要我们在系统架构层次,做更多的创新。

从单核到多核、从同构到异构,从单异构到多异构,再从多异构到异构融合,是一个计算架构从简单到复杂的继承并发展的过程。

芯片设计规模越来越大,单芯片集成更多架构的处理器成为一种非常常见的设计。这种多异构混合计算架构,Intel称为超异构计算。在2023年9月份发布的《异构融合计算技术白皮书》中,采用了更严谨更准确的一种叫法,“异构融合计算”。深刻揭示了多异构混合计算的关键,在于异构处理器之间的协同和融合。

5.2 大芯片如何能够通用?

系统规模越来越大,变化越来越快,从而使得在大算力芯片,通用性比性能更重要。而定制的加速算力芯片覆盖场景少,生命周期短,难以大规模落地。

此外,相比专用,通用是更高级的能力。通用计算,需要从众多需求中提炼和拆解出通用的部分和组件,通过软件编程,灵活地组合出用户所需的形形色色的功能。并且还要实现性能和灵活性的兼顾。

那么,如何实现通用?能够通用的本质原因是什么?

系统规模越大,“二八定律”特征越明显。这样,我们可以把确定性的共性的部分硬件加速实现,相对不确定的个性的部分通过软件编程实现。

在六代计算架构的基础上,增加“通用”约束,变成三代通用计算架构:

  • 第一代单核和第二代多核合并成CPU同构。
  • 取消专用的DSA异构计算阶段,异构计算仅保留GPU的通用异构。
  • 多异构要想成功,就需要融合;异构融合要想成功,就需要通用。因此,从终局思维思考,最终可落地的方案,会是通用的异构融合计算。

5.3 从单兵作战到团队协作

受限于先进工艺,我们无法实现最强算力的芯片。但我们可以通过更多资源的协作,来实现更强的群体智能:

  • 方法一,异构融合。通过异构融合的计算架构创新,实现更多处理器核心的协同和融合。可以在工艺落后1-2代的情况下,实现单个芯片的算力更优。
  • 方法二,算力网络。通过算力网络、东数西算,实现跨集群的算力调度和算力协同,可以实现算力资源的高效利用。
  • 方法三,智能网联。通过终端的智能网联,实现云端协同。清华的李克强院士提出的智能网联汽车中国方案,强调车(终端)、路(MEC接入)、边、云的深度协同,在单体算力有限的情况下,可以实现更智能化的用户服务体验。
  • 方法四,云网边端融合。更庞大算力节点,更高性能更低延迟的网络,更强大的算力基础设施,实现更强大的宏观数字系统。

5.4 总结

从异构到异构融合计算,计算架构的变革,给了我们“弯道超车”的时机;历史机遇稍纵即逝,需要快马加鞭,加大投入。

抓住计算架构变革的历史时机,实现算力芯片的弯道超车!

(正文完)



更多阅读:

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-11-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 软硬件融合 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 成熟赛道,后进赶超先进,很难
    • 1.1 CPU的江湖恩仇
      • 1.2 NVIDIA,从十年磨一剑到市值万亿
        • 1.3 简单总结
        • 2 技术的变革,是后进赶超先进的关键时机
        • 3 AGI大模型的挑战
        • 4 芯片工艺的快速进步
        • 5 算力芯片变革的历史机遇
          • 5.1 系统架构创新
            • 5.2 大芯片如何能够通用?
              • 5.3 从单兵作战到团队协作
              相关产品与服务
              GPU 云服务器
              GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档