Java 8新特性汇总
Java 8的改进
Stream APl
Optional
Nashorn
引擎,允许在JVM上运行 JS
应用Stream API
可以声明性地通过 parallel()
与 sequential()
在并行流与顺序流之间进行切换Lambda 是一个匿名函数,可以把 Lambda 表达式理解为是一段可以传递的代码(将代码像数据一样进行传递)。使用它可以写出更简洁、更灵活的代码。作为一种更紧凑的代码风格,使 Java 的语言表达能力得到了提升。
示例一:调用 Runable 接口
@Test
public void test1(){
//未使用Lambda表达式的写法
Runnable r1 = new Runnable() {
@Override
public void run() {
System.out.println("hello Lambda!");
}
};
r1.run();
System.out.println("========================");
//Lamdba表达式写法
Runnable r2 = () -> System.out.println("hi Lambda!");
r2.run();
}
示例二:使用Comparator接口
@Test
public void test2(){
//未使用Lambda表达式的写法
Comparator<Integer> com1 = new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return Integer.compare(o1,o2);
}
};
int compare1 = com1.compare(12, 32);
System.out.println(compare1);//-1
System.out.println("===================");
//Lambda表达式的写法
Comparator<Integer> com2 = (o1,o2) -> Integer.compare(o1,o2);
int compare2 = com2.compare(54, 21);
System.out.println(compare2);//1
System.out.println("===================");
//方法引用
Comparator<Integer> cpm3 = Integer::compareTo;
int compare3 = cpm3.compare(12, 12);
System.out.println(compare3);//0
}
1.举例: (o1,o2) -> Integer.compare(o1,o2);
2.格式:
->
:lambda 操作符 或 箭头操作符->
左边:lambda 形参列表 (其实就是接口中的抽象方法的形参列表)->
右边:lambda 体(其实就是重写的抽象方法的方法体)语法格式一:无参,有返回值
Runnable r1 = () -> System.out.println("Hello lambda")
语法格式二:Lamdba需要一个参数,但没有返回值
Consumer<String> con = (String str) -> {System.out.println(str)}
语法格式三:数据类型可省略,因为可由编译器推断得出,称为类型推断
Consumer<String> con = (str) -> {System.out.println(str)}
语法格式四:Lamdba若只需要一个参数时,小括号可以省略
Consumer<String> con = str -> {System.out.println(str)}
语法格式五:Lamdba需要两个以上的参数,多条执行语句,并且可以有返回值
Comparator<Integer>com = (o1,o1) -> {
Syste.out.println("Lamdba表达式使用");
return Integer.compare(o1,o2);
}
语法格式六:当Lamdba体只有一条语句时,return和大括号若有,都可以省略
Comparator<Integer>com = (o1,o1) -> Integer.compare(o1,o2);
代码示例:
public class LamdbaTest2 {
//语法格式一:无参,无返回值
@Test
public void test1() {
//未使用Lambda表达式
Runnable r1 = new Runnable() {
@Override
public void run() {
System.out.println("Hello Lamdba");
}
};
r1.run();
System.out.println("====================");
//使用Lambda表达式
Runnable r2 = () -> {
System.out.println("Hi Lamdba");
};
r2.run();
}
//语法格式二:Lambda 需要一个参数,但是没有返回值。
@Test
public void test2() {
//未使用Lambda表达式
Consumer<String> con = new Consumer<String>() {
@Override
public void accept(String s) {
System.out.println(s);
}
};
con.accept("你好啊Lambda!");
System.out.println("====================");
//使用Lambda表达式
Consumer<String> con1 = (String s) -> {
System.out.println(s);
};
con1.accept("我是Lambda");
}
//语法格式三:数据类型可以省略,因为可由编译器推断得出,称为“类型推断”
@Test
public void test3() {
//未使用Lambda表达式
Consumer<String> con = new Consumer<String>() {
@Override
public void accept(String s) {
System.out.println(s);
}
};
con.accept("你好啊Lambda!");
System.out.println("====================");
//使用Lambda表达式
Consumer<String> con1 = (s) -> {
System.out.println(s);
};
con1.accept("我是Lambda");
}
@Test
public void test(){
ArrayList<String> list = new ArrayList<>();//类型推断,用左边推断右边
int[] arr = {1,2,3,4};//类型推断,用左边推断右边
}
//语法格式四:Lambda 若只需要一个参数时,参数的小括号可以省略
@Test
public void test4() {
//未使用Lambda表达式
Consumer<String> con = new Consumer<String>() {
@Override
public void accept(String s) {
System.out.println(s);
}
};
con.accept("你好啊Lambda!");
System.out.println("====================");
//使用Lambda表达式
Consumer<String> con1 = s -> {
System.out.println(s);
};
con1.accept("我是Lambda");
}
//语法格式五:Lambda 需要两个或以上的参数,多条执行语句,并且可以有返回值
@Test
public void test5() {
//未使用Lambda表达式
Comparator<Integer> com1 = new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
System.out.println(o1);
System.out.println(o2);
return Integer.compare(o1, o2);
}
};
System.out.println(com1.compare(23, 45));
System.out.println("====================");
//使用Lambda表达式
Comparator<Integer> com2 = (o1, o2) -> {
System.out.println(o1);
System.out.println(o2);
return o1.compareTo(o2);
};
System.out.println(com2.compare(23, 12));
}
//语法格式六:当 Lambda 体只有一条语句时,return 与大括号若有,都可以省略
@Test
public void test6() {
//未使用Lambda表达式
Comparator<Integer> com1 = new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return Integer.compare(o1, o2);
}
};
System.out.println(com1.compare(23, 45));
System.out.println("====================");
//使用Lambda表达式
Comparator<Integer> com2 = (o1, o2) -> o1.compareTo(o2);
System.out.println(com2.compare(23, 12));
}
@Test
public void test7(){
//未使用Lambda表达式
Consumer<String> con1 = new Consumer<String>() {
@Override
public void accept(String s) {
System.out.println(s);
}
};
con1.accept("hi!");
System.out.println("====================");
//使用Lambda表达式
Consumer<String> con2 = s -> System.out.println(s);
con2.accept("hello");
}
}
->
左边:lambda 形参列表的参数类型可以省略(类型推断);如果 lambda 形参列表只有一个参数,其一对 ()
也可以省略->
右边:lambda 体应该使用一对 {}
包裹;如果 lambda 体只有一条执行语句(可能是 return
语句),省略这一对 {}
和 return
关键字@FunctionalInterface
注解,这样做可以检查它是否是一个函数式接口。@FunctionalInterface
注解,这样做可以检查它是否是一个函数式接口。同时 javadoc
也会包含一条声明,说明这个接口是一个函数式接口。java.util.function
包下定义了Java 8的丰富的函数式接口自定义函数式接口
@FunctionalInterface
public interface MyInterface {
void method1();
}
应用举例
public class LambdaTest3 {
// 消费型接口 Consumer<T> void accept(T t)
@Test
public void test1() {
//未使用Lambda表达式
Learn("java", new Consumer<String>() {
@Override
public void accept(String s) {
System.out.println("学习什么? " + s);
}
});
System.out.println("====================");
//使用Lambda表达
Learn("html", s -> System.out.println("学习什么? " + s));
}
private void Learn(String s, Consumer<String> stringConsumer) {
stringConsumer.accept(s);
}
// 供给型接口 Supplier<T> T get()
@Test
public void test2() {
//未使用Lambdabiaodas
Supplier<String> sp = new Supplier<String>() {
@Override
public String get() {
return new String("我能提供东西");
}
};
System.out.println(sp.get());
System.out.println("====================");
//使用Lambda表达
Supplier<String> sp1 = () -> new String("我能通过lambda提供东西");
System.out.println(sp1.get());
}
//函数型接口 Function<T,R> R apply(T t)
@Test
public void test3() {
//使用Lambda表达式
Employee employee = new Employee(1001, "Tom", 45, 10000);
Function<Employee, String> func1 =e->e.getName();
System.out.println(func1.apply(employee));
System.out.println("====================");
//使用方法引用
Function<Employee,String>func2 = Employee::getName;
System.out.println(func2.apply(employee));
}
//断定型接口 Predicate<T> boolean test(T t)
@Test
public void test4() {
//使用匿名内部类
Function<Double, Long> func = new Function<Double, Long>() {
@Override
public Long apply(Double aDouble) {
return Math.round(aDouble);
}
};
System.out.println(func.apply(10.5));
System.out.println("====================");
//使用Lambda表达式
Function<Double, Long> func1 = d -> Math.round(d);
System.out.println(func1.apply(12.3));
System.out.println("====================");
//使用方法引用
Function<Double,Long>func2 = Math::round;
System.out.println(func2.apply(12.6));
}
}
当需要对一个函数式接口实例化的时候,可以使用 lambda 表达式。
如果我们开发中需要定义一个函数式接口,首先看看在已有的jdk提供的函数式接口是否提供了能满足需求的函数式接口。如果有,则直接调用即可,不需要自己再自定义了。
方法引用可以看做是 Lambda 表达式深层次的表达。换句话说,方法引用就是 Lambda 表达式,也就是函数式接口的一个实例,通过方法的名字来指向一个方法。
当要传递给 Lambda 体的操作,已经实现的方法了,可以使用方法引用!
类(或对象) :: 方法名
::
非静态方法::
静态方法::
非静态方法ClassName::methodName
(针对于情况3)如果给函数式接口提供实例,恰好满足方法引用的使用情境,就可以考虑使用方法引用给函数式接口提供实例。如果不熟悉方法引用,那么还可以使用 lambda 表达式。
public class MethodRefTest {
// 情况一:对象 :: 实例方法
//Consumer中的void accept(T t)
//PrintStream中的void println(T t)
@Test
public void test1() {
//使用Lambda表达
Consumer<String> con1 = str -> System.out.println(str);
con1.accept("中国");
System.out.println("====================");
//使用方法引用
PrintStream ps = System.out;
Consumer con2 = ps::println;
con2.accept("China");
}
//Supplier中的T get()
//Employee中的String getName()
@Test
public void test2() {
//使用Lambda表达
Employee emp = new Employee(1001, "Bruce", 34, 600);
Supplier<String> sup1 = () -> emp.getName();
System.out.println(sup1.get());
System.out.println("====================");
//使用方法引用
Supplier sup2 = emp::getName;
System.out.println(sup2.get());
}
// 情况二:类 :: 静态方法
//Comparator中的int compare(T t1,T t2)
//Integer中的int compare(T t1,T t2)
@Test
public void test3() {
//使用Lambda表达
Comparator<Integer> com1 = (t1, t2) -> Integer.compare(t1, t2);
System.out.println(com1.compare(32, 45));
System.out.println("====================");
//使用方法引用
Comparator<Integer> com2 = Integer::compareTo;
System.out.println(com2.compare(43, 34));
}
//Function中的R apply(T t)
//Math中的Long round(Double d)
@Test
public void test4() {
//使用匿名内部类
Function<Double, Long> func = new Function<Double, Long>() {
@Override
public Long apply(Double aDouble) {
return Math.round(aDouble);
}
};
System.out.println(func.apply(10.5));
System.out.println("====================");
//使用Lambda表达式
Function<Double, Long> func1 = d -> Math.round(d);
System.out.println(func1.apply(12.3));
System.out.println("====================");
//使用方法引用
Function<Double, Long> func2 = Math::round;
System.out.println(func2.apply(12.6));
}
// 情况三:类 :: 实例方法
// Comparator中的int comapre(T t1,T t2)
// String中的int t1.compareTo(t2)
@Test
public void test5() {
//使用Lambda表达式
Comparator<String> com1 = (s1, s2) -> s1.compareTo(s2);
System.out.println(com1.compare("abd", "aba"));
System.out.println("====================");
//使用方法引用
Comparator<String> com2 = String::compareTo;
System.out.println(com2.compare("abd", "abc"));
}
//BiPredicate中的boolean test(T t1, T t2);
//String中的boolean t1.equals(t2)
@Test
public void test6() {
//使用Lambda表达式
BiPredicate<String, String> pre1 = (s1, s2) -> s1.equals(s2);
System.out.println(pre1.test("abc", "abc"));
System.out.println("====================");
//使用方法引用
BiPredicate<String, String> pre2 = String::equals;
System.out.println(pre2.test("abc", "abd"));
}
// Function中的R apply(T t)
// Employee中的String getName();
@Test
public void test7() {
//使用Lambda表达式
Employee employee = new Employee(1001, "Tom", 45, 10000);
Function<Employee, String> func1 =e->e.getName();
System.out.println(func1.apply(employee));
System.out.println("====================");
//使用方法引用
Function<Employee,String>func2 = Employee::getName;
System.out.println(func2.apply(employee));
}
}
方法引用:类名 ::new
数组引用:数组类型 [] :: new
和方法引用类似,函数式接口的抽象方法的形参列表和构造器的形参列表一致。抽象方法的返回值类型即为构造器所属的类的类型
可以把数组看做是一个特殊的类,则写法与构造器引用一致。
//构造器引用
//Supplier中的T get()
@Test
public void test1() {
//使用匿名内部类
Supplier<Employee> sup = new Supplier<Employee>() {
@Override
public Employee get() {
return new Employee();
}
};
System.out.println(sup.get());
//使用Lambda表达式
System.out.println("====================");
Supplier<Employee> sup1 = () -> new Employee(1001, "Tom", 43, 13333);
System.out.println(sup1.get());
//使用方法引用
Supplier<Employee> sup2 = Employee::new;
System.out.println(sup2.get());
}
//Function中的R apply(T t)
@Test
public void test2() {
//使用Lambda表达式
Function<Integer, Employee> func1 = id -> new Employee(id);
Employee employee = func1.apply(1001);
System.out.println(employee);
System.out.println("====================");
//使用方法引用
Function<Integer, Employee> func2 = Employee::new;
Employee employee1 = func2.apply(1002);
System.out.println(employee1);
}
//BiFunction中的R apply(T t,U u)
@Test
public void test3() {
//使用Lambda表达式
BiFunction<Integer, String, Employee> func1 = (id, name) -> new Employee(id, name);
System.out.println(func1.apply(1001, "Tom"));
System.out.println("====================");
//使用方法引用
BiFunction<Integer, String, Employee> func2 = Employee::new;
System.out.println(func2.apply(1002, "Jarry"));
}
//数组引用
//Function中的R apply(T t)
@Test
public void test4() {
Function<Integer, String[]> func1 = length -> new String[length];
String[] arr1 = func1.apply(5);
System.out.println(Arrays.toString(arr1));
System.out.println("====================");
//使用方法引用
Function<Integer,String[]>func2=String[]::new;
String[] arr2 = func2.apply(10);
System.out.println(Arrays.toString(arr2));
}
Stream
关注的是对数据的运算,与 CPU
打交道;集合关注的是数据的存储,与内存打交道;api
,使用这套 api
可以对内存中的数据进行过滤、排序、映射、归约等操作。类似于 sql
对数据库中表的相关操作。Stream
是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。“集合讲的是数据, Stream讲的是计算!”使用注意点:
① Stream
自己不会存储元素。
② Stream
不会改变源对象。相反,他们会返回一个持有结果的新 Stream
。
③ Stream
操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。
① Stream 的实例化
② 一系列的中间操作(过滤、映射、…)
③ 终止操作
使用流程中的注意点:
3.1.1 创建方式一:通过集合
Java 8的 Collection
接口被扩展,提供了两个获取流的方法:
default Stream\<E> stream()
: 返回一个顺序流default Stream\<E> parallelStream()
: 返回一个并行流3.1.2 创建方式二:通过数组
Java 8中的 Arrays
的静态方法 stream()
可以获取数组流
Arrays
类的 static\<T> Stream\<T> stream(T[] array)
: 返回一个流public static IntStream stream(int[] array)
public static LongStream stream(long[] array)
public static DoubleStream stream(double[] array)
3.1.3 创建方式三:通过Stream的of()方法
可以调用Stream类静态方法of(),通过显示值创建一个流。可以用于接收任意数量的参数
public static \<T>Stream\<T> of(T...values)
:返回一个流3.1.4 创建方式四:创建无限流
public static\<T> Stream\<T> iterate(final T seed, final UnaryOperator\<T> f)
public static\<T> Stream\<T> generate(Supplier\<T> s)
代码示例:
public class StreamAPITest1 {
//创建 Stream方式一:通过集合
@Test
public void test1() {
List<Employee> employees = EmployeeData.getEmployees();
//efault Stream<E> stream() : 返回一个顺序流
Stream<Employee> stream = employees.stream();
//default Stream<E> parallelStream() : 返回一个并行流
Stream<Employee> employeeStream = employees.parallelStream();
}
//创建 Stream方式二:通过数组
@Test
public void test2() {
int[] arrs = {1, 2, 3, 6, 2};
//调用Arrays类的static <T> Stream<T> stream(T[] array): 返回一个流
IntStream stream = Arrays.stream(arrs);
Employee e1 = new Employee(1001, "Tom");
Employee e2 = new Employee(1002, "Jerry");
Employee[] employees = {e1, e2};
Stream<Employee> stream1 = Arrays.stream(employees);
}
//创建 Stream方式三:通过Stream的of()
@Test
public void test3() {
Stream<Integer> integerStream = Stream.of(12, 34, 45, 65, 76);
}
//创建 Stream方式四:创建无限流
@Test
public void test4() {
//迭代
//public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f)
//遍历前10个偶数
Stream.iterate(0, t -> t + 2).limit(10).forEach(System.out::println);
//生成
//public static<T> Stream<T> generate(Supplier<T> s)
Stream.generate(Math::random).limit(10).forEach(System.out::println);
}
}
多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理!而在终止操作时一次性全部处理,称为惰性求值。
3.2.1 筛选与切片
代码示例:
//1-筛选与切片,注意执行终止操作后,Stream流就被关闭了,使用时需要再次创建Stream流
@Test
public void test1(){
List<Employee> employees = EmployeeData.getEmployees();
//filter(Predicate p)——接收 Lambda , 从流中排除某些元素。
Stream<Employee> employeeStream = employees.stream();
//练习:查询员工表中薪资大于7000的员工信息
employeeStream.filter(e -> e.getSalary() > 7000).forEach(System.out::println);
//limit(n)——截断流,使其元素不超过给定数量。
employeeStream.limit(3).forEach(System.out::println);
System.out.println();
//skip(n) —— 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补
employeeStream.skip(3).forEach(System.out::println);
//distinct()——筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素
employees.add(new Employee(1010,"刘庆东",56,8000));
employees.add(new Employee(1010,"刘庆东",56,8000));
employees.add(new Employee(1010,"刘庆东",56,8000));
employees.add(new Employee(1010,"刘庆东",56,8000));
employeeStream.distinct().forEach(System.out::println);
}
3.2.2 映射
代码示例:
//2-映射
@Test
public void test2(){
List<String> list = Arrays.asList("aa", "bb", "cc", "dd");
//map(Function f)——接收一个函数作为参数,将元素转换成其他形式或提取信息,该函数会被应用到每个元素上,并将其映射成一个新的元素。
list.stream().map(str -> str.toUpperCase()).forEach(System.out::println);
//练习1:获取员工姓名长度大于3的员工的姓名。
List<Employee> employees = EmployeeData.getEmployees();
Stream<String> nameStream = employees.stream().map(Employee::getName);
nameStream.filter(name -> name.length() >3).forEach(System.out::println);
System.out.println();
//练习2:使用map()中间操作实现flatMap()中间操作方法
Stream<Stream<Character>> streamStream = list.stream().map(StreamAPITest2::fromStringToStream);
streamStream.forEach(s ->{
s.forEach(System.out::println);
});
System.out.println();
//flatMap(Function f)——接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
Stream<Character> characterStream = list.stream().flatMap(StreamAPITest2::fromStringToStream);
characterStream.forEach(System.out::println);
}
//将字符串中的多个字符构成的集合转换为对应的Stream的实例
public static Stream<Character>fromStringToStream(String str){
ArrayList<Character> list = new ArrayList<>();
for (Character c :
str.toCharArray()) {
list.add(c);
}
return list.stream();
}
//map()和flatMap()方法类似于List中的add()和addAll()方法
@Test
public void test(){
ArrayList<Object> list1 = new ArrayList<>();
list1.add(1);
list1.add(2);
list1.add(3);
list1.add(4);
ArrayList<Object> list2 = new ArrayList<>();
list2.add(5);
list2.add(6);
list2.add(7);
list2.add(8);
list1.add(list2);
System.out.println(list1);//[1, 2, 3, 4, [5, 6, 7, 8]]
list1.addAll(list2);
System.out.println(list1);//[1, 2, 3, 4, [5, 6, 7, 8], 5, 6, 7, 8]
}
3.2.3 排序
代码示例:
//3-排序
@Test
public void test3(){
//sorted()——自然排序
List<Integer> list = Arrays.asList(12, 34, 54, 65, 32);
list.stream().sorted().forEach(System.out::println);
//抛异常,原因:Employee没有实现Comparable接口
List<Employee> employees = EmployeeData.getEmployees();
employees.stream().sorted().forEach(System.out::println);
//sorted(Comparator com)—— 定制排序
List<Employee> employees1 = EmployeeData.getEmployees();
employees1.stream().sorted((e1,e2)->{
int ageValue = Integer.compare(e1.getAge(), e2.getAge());
if (ageValue != 0){
return ageValue;
}else {
return -Double.compare(e1.getSalary(),e2.getSalary());
}
}).forEach(System.out::println);
}
List
、 Integer
,甚至是 void
3.3.1 匹配与查找
代码示例:
//1-匹配与查找
@Test
public void test1(){
List<Employee> employees = EmployeeData.getEmployees();
//allMatch(Predicate p)——检查是否匹配所有元素。
//练习:是否所有的员工的年龄都大于18
boolean allMatch = employees.stream().allMatch(e -> e.getAge() > 18);
System.out.println(allMatch);
//anyMatch(Predicate p)——检查是否至少匹配一个元素。
//练习:是否存在员工的工资大于 5000
boolean anyMatch = employees.stream().anyMatch(e -> e.getSalary() > 5000);
System.out.println(anyMatch);
//noneMatch(Predicate p)——检查是否没有匹配的元素。
//练习:是否存在员工姓“雷”
boolean noneMatch = employees.stream().noneMatch(e -> e.getName().startsWith("雷"));
System.out.println(noneMatch);
//findFirst——返回第一个元素
Optional<Employee> first = employees.stream().findFirst();
System.out.println(first);
//findAny——返回当前流中的任意元素
Optional<Employee> employee = employees.parallelStream().findAny();
System.out.println(employee);
}
@Test
public void test2(){
List<Employee> employees = EmployeeData.getEmployees();
// count——返回流中元素的总个数
long count = employees.stream().filter(e -> e.getSalary()>5000).count();
System.out.println(count);
//max(Comparator c)——返回流中最大值
//练习:返回最高的工资
Stream<Double> salaryStream = employees.stream().map(e -> e.getSalary());
Optional<Double> maxSalary = salaryStream.max(Double::compareTo);
System.out.println(maxSalary);
//min(Comparator c)——返回流中最小值
//练习:返回最低工资的员工
Optional<Double> minSalary = employees.stream().map(e -> e.getSalary()).min(Double::compareTo);
System.out.println(minSalary);
//forEach(Consumer c)——内部迭代
employees.stream().forEach(System.out::println);
System.out.println();
//使用集合的遍历操作
employees.forEach(System.out::println);
}
3.3.2 归约
备注:
map
和reduce
的连接通常称为map-reduce
模式,因 Google 用它来进行网络搜索而出名
代码示例:
//2-归约
@Test
public void test3(){
//reduce(T identity, BinaryOperator)——可以将流中元素反复结合起来,得到一个值。返回 T
//练习1:计算1-10的自然数的和
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
Integer sum = list.stream().reduce(0, Integer::sum);
System.out.println(sum);
//reduce(BinaryOperator) ——可以将流中元素反复结合起来,得到一个值。返回 Optional<T>
//练习2:计算公司所有员工工资的总和
List<Employee> employees = EmployeeData.getEmployees();
Optional<Double> sumSalary = employees.stream().map(e -> e.getSalary()).reduce(Double::sum);
System.out.println(sumSalary);
}
3.3.3 收集
Collector
接口中方法的实现决定了如何对流执行收集的操作(如收集到 List
、Set
、Map
)
Collectors
实用类提供了很多静态方法
代码示例:
//3-收集
@Test
public void test4(){
//collect(Collector c)——将流转换为其他形式。接收一个 Collector接口的实现,用于给Stream中元素做汇总的方法
//练习1:查找工资大于6000的员工,结果返回为一个List或Set
List<Employee> employees = EmployeeData.getEmployees();
List<Employee> employeeList = employees.stream().filter(e -> e.getSalary() > 6000).collect(Collectors.toList());
employeeList.forEach(System.out::println);
System.out.println();
Set<Employee> employeeSet = employees.stream().filter(e -> e.getSalary() > 6000).collect(Collectors.toSet());
employeeSet.forEach(System.out::println);
}
Optional<T> 类(java.util.Optional)
是一个容器类,它可以保存类型 T
的值,代表这个值存在。或者仅仅保存 null
,表示这个值不存在。原来用 null
表示一个值不存在,现在 Optional
可以更好的表达这个概念。并且可以避免空指针异常。Optional
类提供了很多方法,可以不用再现实的进行空值检验。
Optional.of(T t)
: 创建一个 Optional
实例,t
必须非空;Optional.empty()
: 创建一个空的 Optional
实例Optional.ofNullable(T t)
:t
可以为 null
boolean isPresent()
:判断是否包含对象void ifPresent(Consumer<? super T> consumer)
:如果有值,就执行 Consumer
接口的实现代码,并且该值会作为参数传给它。T get()
:如果调用对象包含值,返回该值,否则抛异常T orElse(T other)
:如果有值则将其返回,否则返回指定的 other
对象T orElseGet(Supplier<? extends t> other)
:如果有值则将其返回,否则返回由 Supplier
接口实现提供的对象。T orElseThrow(Supplier<? extends X> exceptionSupplier)
:如果有值则将其返回,否则抛出由 Supplier
接口实现提供的异常。of()
和 get()
方法搭配使用,明确对象非空ofNullable()
和 orElse()
搭配使用,不确定对象非空public class OptionalTest {
@Test
public void test1() {
//empty():创建的Optional对象内部的value = null
Optional<Object> op1 = Optional.empty();
if (!op1.isPresent()){//Optional封装的数据是否包含数据
System.out.println("数据为空");
}
System.out.println(op1);
System.out.println(op1.isPresent());
//如果Optional封装的数据value为空,则get()报错。否则,value不为空时,返回value.
System.out.println(op1.get());
}
@Test
public void test2(){
String str = "hello";
// str = null;
//of(T t):封装数据t生成Optional对象。要求t非空,否则报错。
Optional<String> op1 = Optional.of(str);
//get()通常与of()方法搭配使用。用于获取内部的封装的数据value
String str1 = op1.get();
System.out.println(str1);
}
@Test
public void test3(){
String str ="Beijing";
str = null;
//ofNullable(T t) :封装数据t赋给Optional内部的value。不要求t非空
Optional<String> op1 = Optional.ofNullable(str);
System.out.println(op1);
//orElse(T t1):如果Optional内部的value非空,则返回此value值。如果
//value为空,则返回t1.
String str2 = op1.orElse("shanghai");
System.out.println(str2);
}
}
使用 Optional
类避免产生空指针异常
public class GirlBoyOptionalTest {
//使用原始方法进行非空检验
public String getGrilName1(Boy boy){
if (boy != null){
Girl girl = boy.getGirl();
if (girl != null){
return girl.getName();
}
}
return null;
}
//使用Optional类的getGirlName()进行非空检验
public String getGirlName2(Boy boy){
Optional<Boy> boyOptional = Optional.ofNullable(boy);
//此时的boy1一定非空,boy为空是返回“迪丽热巴”
Boy boy1 = boyOptional.orElse(new Boy(new Girl("迪丽热巴")));
Girl girl = boy1.getGirl();
//girl1一定非空,girl为空时返回“古力娜扎”
Optional<Girl> girlOptional = Optional.ofNullable(girl);
Girl girl1 = girlOptional.orElse(new Girl("古力娜扎"));
return girl1.getName();
}
//测试手动写的控制检测
@Test
public void test1(){
Boy boy = null;
System.out.println(getGrilName1(boy));
boy = new Boy();
System.out.println(getGrilName1(boy));
boy = new Boy(new Girl("杨幂"));
System.out.println(getGrilName1(boy));
}
//测试用Optional类写的控制检测
@Test
public void test2(){
Boy boy = null;
System.out.println(getGirlName2(boy));
boy = new Boy();
System.out.println(getGirlName2(boy));
boy = new Boy(new Girl("杨幂"));
System.out.println(getGirlName2(boy));
}
}
提高了创建对象、对象赋值和反射创建对象的时间
代码示例:
public class testReflection {
// 循环次数10亿次
private static final int loopCnt = 1000 * 1000 * 1000;
public static void main(String[] args) throws InvocationTargetException, NoSuchMethodException, InstantiationException, IllegalAccessException {
// 输出jdk版本
System.out.println("java version is" + System.getProperty("java.version"));
creatNewObject();
optionObject();
reflectCreatObject();
}
// person对象
static class Person {
private Integer age = 20;
public Integer getAge() {
return age;
}
public void setAge(Integer age) {
this.age = age;
}
}
// 每次创建新对象
public static void creatNewObject() {
long startTime = System.currentTimeMillis();
for (int i = 0; i < loopCnt; i++) {
Person person = new Person();
person.setAge(30);
}
long endTime = System.currentTimeMillis();
System.out.println("循环十亿次创建对象所需的时间:" + (endTime - startTime));
}
// 为同一个对象赋值
public static void optionObject() {
long startTime = System.currentTimeMillis();
Person p = new Person();
for (int i = 0; i < loopCnt; i++) {
p.setAge(10);
}
long endTime = System.currentTimeMillis();
System.out.println("循环十亿次为同一对象赋值所需的时间:" + (endTime - startTime));
}
// 通过反射创建对象
public static void reflectCreatObject() throws IllegalAccessException, InstantiationException, NoSuchMethodException, InvocationTargetException {
long startTime = System.currentTimeMillis();
Class<Person> personClass = Person.class;
Person person = personClass.newInstance();
Method setAge = personClass.getMethod("setAge", Integer.class);
for (int i = 0; i < loopCnt; i++) {
setAge.invoke(person, 90);
}
long endTime = System.currentTimeMillis();
System.out.println("循环十亿次反射创建对象所需的时间:" + (endTime - startTime));
}
}
编译级别为JDK8时
java version is 1.8.0_201
循环十亿次创建对象所需的时间:9
循环十亿次为同一对象赋值所需的时间:59
循环十亿次反射创建对象所需的时间:2622
编译级别为JDK7时
java version is 1.7
循环十亿次创建对象所需的时间:6737
循环十亿次为同一对象赋值所需的时间:3394
循环十亿次反射创建对象所需的时间:293603