向量数据库大模型知识库向量数据存储_向量数据检索- 腾讯云 (tencent.com)
OpenAI 掀起AI 变革,让向量数据库越来越受关注。
AIGC 技术迎来大爆发后,国内外科技公司纷纷推出自家大模型产品,这一波浪潮把向量数据库这一原本没那么火爆的赛道推到了聚光灯下。
使用向量数据库可以提升效率、降低成本,加速大模型落地行业场景,同时具有强大的相似性搜索功能,以更复杂的方式构建能够 “理解” 不同数据格式中保存的值的数据存储,降低企业存储成本等优势。本文介绍腾讯云向量数据库实践体验,帮助更多的人认识向量数据库。
向量数据库是专门用来存储和查询向量的数据库,其存储的向量来自于对文本、语音、图像、视频等的向量化。与传统数据库相比,向量数据库可以处理更多非结构化数据(比如图像和音频)
向量数据库是一种基于向量空间模型的数据库,其工作原理主要包括以下几个方面:
总而言之,向量数据库的主要特点是能够高效地存储和查询大规模的向量数据。它通常采用基于向量相似度的查询方式,即根据向量之间的相似度来检索数据。这种查询方式可以用于各种应用场景,例如图像搜索、音乐推荐、文本分类等。维度越高、信息量越大,这些特性都是传统数据库很难做到的。
向量数据库是一种新型的数据库技术,它使用向量化计算来处理和存储数据。与传统的关系型数据库不同,向量数据库使用向量作为基本数据类型,可以高效地处理大规模的复杂数据。
向量数据库是一种非常有前途的数据库技术,它可以高效地处理大规模的复杂数据,并支持复杂的查询操作。但是,由于它是一种相对较新的技术,目前还存在一些限制和挑战。
向量数据库与传统数据库的区别主要在以下几个方面:
向量数据库大模型知识库向量数据存储_向量数据检索- 腾讯云 (tencent.com)
腾讯云向量数据库(Tencent Cloud VectorDB)是一款全托管的自研企业级分布式数据库服务,专用于存储、检索、分析多维向量数据。该数据库支持多种索引类型和相似度计算方法,单索引支持 10 亿级向量规模,可支持百万级 QPS 及毫秒级查询延迟。腾讯云向量数据库不仅能为大模型提供外部知识库,提高大模型回答的准确性,还可广泛应用于推荐系统、自然语言处理等 AI 领域。
腾讯云向量数据库向量数据库单索引支持10亿级向量数据规模,可支持百万级 QPS 及毫秒级查询延迟。向量数据库提供多副本高可用特性,其多可用区和三节点的架构可用性可达99.99%,显著提高系统的可靠性和容错性,确保数据库在面临节点故障和负载变化等挑战时仍能正常运行。向量数据库架构支持水平扩展,单实例可支持百万级 QPS,轻松满足 AI 场景下的向量存储与检索需求
方便快速检索和数据分析
向量数据库能够快速检索查询中的类似对象,因为它们已经预先计算过了。其基本概念被称为近似最近邻(Approximate Nearest Neighbor:ANN)搜索,它使用不同的算法来索引和计算相似性。
正如你所能想象的,当你有数百万个嵌入时,用简单的 k 近邻(kNN)算法计算查询和每个嵌入对象之间的相似性可能会变得相当耗时。而使用 ANN 搜索算法,你可以以一定的准确性换取速度,并检索与查询近似最相似的对象。
索引:为此,向量数据库对向量嵌入进行索引。此步骤将向量映射到数据结构,从而实现更快的搜索。
统计显示,将腾讯云向量数据库用于大模型预训练数据的分类、去重和清洗相比传统方式可以实现 10 倍效率的提升,如果将向量数据库作为外部知识库用于模型推理,则可以将成本降低 2-4 个数量级。
具体而言,在接入层,腾讯云向量数据库支持自然语言文本的输入,同时采用“标量+向量”的查询方式,支持全内存索引,最高支持每秒百万的查询量(QPS);在计算层,AI Native 开发范式能实现全量数据 AI 计算,一站式解决企业在搭建私域知识库时的文本切分(segment)、向量化(embedding)等难题;在存储层,腾讯云向量数据库支持数据智能存储分布,助力企业存储成本降低 50%。
企业原先接入一个大模型需要花 1 个月左右时间,使用腾讯云向量数据库后,3 天时间即可完成,极大降低了企业的接入成本。
接下来分享一下向量数据库的使用步骤,目前全球主流的云服务厂商都有对应的向量数据库的服务,这里以腾讯云向量数据库来做简单使用介绍。
在开始使用腾讯云向量数据库之前,需要先去进行申请注册操作,注册过程相对简单,只需提供必要的个人信息,即可,注册详细过程这里就不再详细说明。
向量数据库大模型知识库向量数据存储_向量数据检索- 腾讯云 (tencent.com)
步骤1:如下图登录账号后我们选择【立即体验】
免费测试版实例每个账号仅限申领1个,其余实例兔费试用时长1个月;若-个月内未使用实例,平台将自动回收。
步骤2:进入到腾讯云向量数据库控制台之后,点击【新建】创建向量数据库实例,在创建实例过程中,需要设置实例的名称等参数,具体如下图所示:
步骤3:创建成功之后控制台就可以看到新建实例如下图
步骤4:选择【管理】->【秘钥管理】复制秘钥
步骤5:选择【管理】->【可视化管理】->【登录】(把刚才复制秘钥粘贴到密码区)
步骤6:进入可视化的【数据库管理】页面就可以操作了 下面是已经创建好的数据库
随着社会的发展,人们的生活节奏加快,社交圈子逐渐固化,这导致许多单身人士在寻找合适的伴侣时面临困难。传统的相亲方式,虽然直接,但往往受到时间、空间等多种因素的制约,效率不高。在这种背景下,相亲社交应用应运而生,它结合了现代科技与人们的婚恋需求,为
单身人士提供了一个更广阔、更便捷的交友平台。
相亲社交应用充分利用了互联网的优势,打破了地域的限制,让用户可以随时随地与全国各地的潜在对象进行交流。这种方式不仅扩大了交友范围,还大大提高了相亲的效率。而且,与传统的相亲方式相比,相亲社交应用更为年轻、个性化,用户可以根据自己的喜好和需求,筛选出更为合适的对象。
推荐系统的目标是根据用户的历史行为和偏好,向用户推荐可能感兴趣的物品。在这种场景下,将用户行为特征向量化存储在向量数据库。当发起推荐请求时,系统会基于用户特征进行相似度计算,然后返回与用户可能感兴趣的物品作为推荐结果。
在推荐系统中,用户和物品可以用向量表示,以捕捉其特征和属性。例如,用户可能对电影类型、导演、演员等方面有偏好,这些偏好可以用一个数值向量表示。通过计算用户向量与物品向量之间的相似度,可以实现个性化的推荐。
推荐系统:推荐系统可以将用户和购买的物品都生成 VE,并通过相似性来推荐新物品。
以下是一个基本的相亲设计app推荐系统设计和实现过程:
本次测试旨在验证腾讯云向量数据库在相亲社交应用中的性能和效果。我们采用了真实的相亲社交应用场景,并设计了一系列测试用例,以评估向量数据库在数据存储、检索、匹配等方面的表现。
本次测试使用了腾讯云提供的向量数据库服务,并搭建了相应的相亲社交应用环境。测试数据包括用户信息、个人信息、交友偏好等。
随着向量数据库和 AI 的结合更加紧密,客户向量数据库的易用性会有更高要求。大模型加速向量数据库进入飞速发展期。
腾讯云向量数据库在相亲社交APP应用中具有重要价值。以下是几个方面的考虑:
综上所述,腾讯云向量数据库在相亲社交APP应用中具有重要价值,可以提供高效的数据存储和管理、高性能搜索和匹配、个性化推荐以及数据安全和隐私保护等功能。这些功能可以提升相亲社交APP的用户体验、满意度和安全性,推动平台的增长和发展。
需要注意的是,尽管腾讯云向量数据库采取了这些安全措施,但用户在使用数据库时仍需保持警惕,并遵循最佳实践和安全建议。例如,定期更新密码、限制不必要的访问权限、定期备份数据等。通过综合使用这些安全措施和最佳实践,可以最大程度地保护用户隐私和数据安全。
个人觉得向量数据库的出现,给我们提供了一种全新的数据组织方式,它打破了传统关系型数据库的局限,为有需要者处理非结构化数据提供了高效的解决方案。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。