
Online Hard Example Mining(OHEM)是一种在深度学习目标检测和分类任务中用于样本挖掘和损失加权的技术。它的主要目标是帮助模型更好地处理难以分类的样本,提高模型的性能。本文记录相关内容。
在传统的随机采样训练中,每个训练批次都从数据集中随机选择样本,包括容易分类的样本和难以分类的样本。这可能导致模型过度关注容易分类的样本,而对难以分类的样本不够关注,从而降低了性能。Online Hard Example Mining 试图解决这个问题,其核心思想如下:
OHEM 的优点是可以帮助模型集中精力处理难以分类的样本,从而提高模型的性能,特别是在高度不平衡的数据集中。它在目标检测、图像分类和语义分割等任务中得到广泛应用。