给你一个整数 x
,如果 x
是一个回文整数,返回 true
;否则,返回 false
。
回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。
121
是回文,而 123
不是。示例 1:
输入:x = 121
输出:true
示例 2:
输入:x = -121
输出:false
解释:从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。
示例 3:
输入:x = 10
输出:false
解释:从右向左读, 为 01 。因此它不是一个回文数。
映入脑海的第一个想法是将数字转换为字符串,并检查字符串是否为回文。但是,这需要额外的非常量空间来创建问题描述中所不允许的字符串。
第二个想法是将数字本身反转,然后将反转后的数字与原始数字进行比较,如果它们是相同的,那么这个数字就是回文。 但是,如果反转后的数字大于
,我们将遇到整数溢出问题。
按照第二个想法,为了避免数字反转可能导致的溢出问题,为什么不考虑只反转
数字的一半?毕竟,如果该数字是回文,其后半部分反转后应该与原始数字的前半部分相同。
例如,输入 1221,我们可以将数字 “1221” 的后半部分从 “21” 反转为 “12”,并将其与前半部分 “12” 进行比较,因为二者相同,我们得知数字 1221 是回文。
算法
首先,我们应该处理一些临界情况。所有负数都不可能是回文,例如:-123 不是回文,因为 - 不等于 3。所以我们可以对所有负数返回 false。除了 0 以外,所有个位是 0 的数字不可能是回文,因为最高位不等于 0。所以我们可以对所有大于 0 且个位是 0 的数字返回 false。
现在,让我们来考虑如何反转后半部分的数字。
对于数字 1221,如果执行 1221 % 10,我们将得到最后一位数字 1,要得到倒数第二位数字,我们可以先通过除以 10 把最后一位数字从 1221 中移除,1221 / 10 = 122,再求出上一步结果除以 10 的余数,122 % 10 = 2,就可以得到倒数第二位数字。如果我们把最后一位数字乘以 10,再加上倒数第二位数字,1 * 10 + 2 = 12,就得到了我们想要的反转后的数字。如果继续这个过程,我们将得到更多位数的反转数字。
现在的问题是,我们如何知道反转数字的位数已经达到原始数字位数的一半?
由于整个过程我们不断将原始数字除以 10,然后给反转后的数字乘上 10,所以,当原始数字小于或等于反转后的数字时,就意味着我们已经处理了一半位数的数字了。
class Solution {
public:
bool isPalindrome(int x) {
// 特殊情况:
// 如上所述,当 x < 0 时,x 不是回文数。
// 同样地,如果数字的最后一位是 0,为了使该数字为回文,
// 则其第一位数字也应该是 0
// 只有 0 满足这一属性
if (x < 0 || (x % 10 == 0 && x != 0)) {
return false;
}
int revertedNumber = 0;
while (x > revertedNumber) {
revertedNumber = revertedNumber * 10 + x % 10;
x /= 10;
}
// 当数字长度为奇数时,我们可以通过 revertedNumber/10 去除处于中位的数字。
// 例如,当输入为 12321 时,在 while 循环的末尾我们可以得到 x = 12,revertedNumber = 123,
// 由于处于中位的数字不影响回文(它总是与自己相等),所以我们可以简单地将其去除。
return x == revertedNumber || x == revertedNumber / 10;
}
};
复杂度分析
时间复杂度:
,对于每次迭代,我们会将输入除以10,因此时间复杂度为
。 空间复杂度:
。我们只需要常数空间存放若干变量。