前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >买卖股票的最佳时机 IV

买卖股票的最佳时机 IV

作者头像
狼啸风云
发布2023-12-27 08:47:28
1780
发布2023-12-27 08:47:28
举报
文章被收录于专栏:计算机视觉理论及其实现

给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

代码语言:javascript
复制
输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

示例 2:

代码语言:javascript
复制
输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
     随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

与其余的股票问题类似,我们使用一系列变量存储「买入」的状态,再用一系列变量存储「卖出」的状态,通过动态规划的方法即可解决本题。

我们用

表示对于数组

中的价格而言,进行恰好j笔交易,并且当前手上持有一支股票,这种情况下的最大利润;用

表示恰好进行j笔交易,并且当前手上不持有股票,这种情况下的最大利润。

那么我们可以对状态转移方程进行推导。对于

,我们考虑当前手上持有的股票是否是在第 iii 天买入的。如果是第

天买入的,那么在第

天时,我们手上不持有股票,对应状态

,并且需要扣除

的买入花费;如果不是第

天买入的,那么在第

天时,我们手上持有股票,对应状态

。那么我们可以得到状态转移方程:

同理对于

,如果是第

天卖出的,那么在第

天时,我们手上持有股票,对应状态

,并且需要增加

的卖出收益;如果不是第 iii 天卖出的,那么在第

天时,我们手上不持有股票,对应状态

。那么我们可以得到状态转移方程:

由于在所有的 nnn 天结束后,手上不持有股票对应的最大利润一定是严格由于手上持有股票对应的最大利润的,然而完成的交易数并不是越多越好(例如数组

单调递减,我们不进行任何交易才是最优的),因此最终的答案即为

中的最大值。

细节

在上述的状态转移方程中,确定边界条件是非常重要的步骤。我们可以考虑将所有的

以及

设置为边界。

对于

,由于只有

唯一的股价,因此我们不可能进行过任何交易,那么我们可以将所有的

设置为一个非常小的值,表示不合法的状态。而对于

,它的值为

,即「我们在第0天以

的价格买入股票」是唯一满足手上持有股票的方法。

对于

,同理我们可以将所有的

设置为一个非常小的值,表示不合法的状态。而对于

,它的值为

,即「我们在第

天不做任何事」是唯一满足手上不持有股票的方法。

在设置完边界之后,我们就可以使用二重循环,在

的范围内进行状态转移。需要注意的是,

的状态转移方程中包含

,在

时其表示不合法的状态,因此在

时,我们无需对\

进行转移,让其保持值为0即可。

最后需要注意的是,本题中k的最大值可以达到

,然而这是毫无意义的,因为

天最多只能进行

笔交易,其中

表示对

向下取整。因此我们可以将

取较小值之后再进行动态规划。

代码语言:javascript
复制
class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {
        if (prices.empty()) {
            return 0;
        }

        int n = prices.size();
        k = min(k, n / 2);
        vector<vector<int>> buy(n, vector<int>(k + 1));
        vector<vector<int>> sell(n, vector<int>(k + 1));

        buy[0][0] = -prices[0];
        sell[0][0] = 0;
        for (int i = 1; i <= k; ++i) {
            buy[0][i] = sell[0][i] = INT_MIN / 2;
        }

        for (int i = 1; i < n; ++i) {
            buy[i][0] = max(buy[i - 1][0], sell[i - 1][0] - prices[i]);
            for (int j = 1; j <= k; ++j) {
                buy[i][j] = max(buy[i - 1][j], sell[i - 1][j] - prices[i]);
                sell[i][j] = max(sell[i - 1][j], buy[i - 1][j - 1] + prices[i]);   
            }
        }

        return *max_element(sell[n - 1].begin(), sell[n - 1].end());
    }
};

注意到在状态转移方程中,

都从

以及

转移而来,因此我们可以使用一维数组而不是二维数组进行状态转移,即:

这样的状态转移方程会因为状态的覆盖而变得不同。例如如果我们先计算b而后计算s,那么在计算到s[j]时,其状态转移方程中包含的b[j-1]这一项的值已经被覆盖了,即本来应当是从二维表示中的

转移而来,而现在却变成了

但其仍然是正确的。我们考虑

的状态转移方程:

那么s[j]的状态转移方程实际上为:

为什么s[j]的状态转移方程中会出现

这一项?实际上,我们是把「在第

天以

的价格买入,并在同一天以

的价格卖出」看成了一笔交易,这样对应的收益即为:

也就是

本身。这种在同一天之内进行一笔交易的情况,收益为零,它并不会带来额外的收益,因此对最终的答案并不会产生影响,状态转移方程在本质上仍然是正确的。

代码语言:javascript
复制
class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {
        if (prices.empty()) {
            return 0;
        }

        int n = prices.size();
        k = min(k, n / 2);
        vector<int> buy(k + 1);
        vector<int> sell(k + 1);

        buy[0] = -prices[0];
        sell[0] = 0;
        for (int i = 1; i <= k; ++i) {
            buy[i] = sell[i] = INT_MIN / 2;
        }

        for (int i = 1; i < n; ++i) {
            buy[0] = max(buy[0], sell[0] - prices[i]);
            for (int j = 1; j <= k; ++j) {
                buy[j] = max(buy[j], sell[j] - prices[i]);
                sell[j] = max(sell[j], buy[j - 1] + prices[i]);   
            }
        }

        return *max_element(sell.begin(), sell.end());
    }
};

复杂度分析

时间复杂度:

,其中

是数组

的大小,即我们使用二重循环进行动态规划需要的时间。

空间复杂度:

,取决于我们使用二维数组还是一维数组进行动态规划。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-12-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档