前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >文档和图片的OCR解析实践

文档和图片的OCR解析实践

原创
作者头像
Luoyger
修改2024-03-13 12:28:43
4900
修改2024-03-13 12:28:43
举报
文章被收录于专栏:AI技术探索和应用

文档中的图片或图片本身的OCR识别可以通过第三方工具如PaddleOCR和CNOCR来实现,如下是两个识别过程的实践,以及使用Streamlit构建可视化页面的示例。

PaddleOCR

安装PaddleOCR环境和依赖

代码语言:javascript
复制
# gpu
conda create -n paddleocr python=3.9 -y
conda activate paddleocr 
pip install paddlepaddle
# pip install paddlepaddle-gpu
pip3 install "paddleocr>=2.6.0.3"
pip install opencv-python
pip install PyMuPDF

PaddleOCR文档参考:https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.7/ppstructure/docs/quickstart.md

使用PaddleOCR解析PDF中的图片,或直接解析图片中的Table

代码语言:javascript
复制
def pdf(file):
    table_engine = PPStructure(layout=False, show_log=True)
    pdf_reader = PyPDF2.PdfReader(file)
    file_content = ''
    for page in pdf_reader.pages:
        file_content += page.extract_text().strip() + '\n'
        for image in page.images:
            with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_image:
                temp_image.write(image.data)
                temp_image_path = temp_image.name
            img = cv2.imread(temp_image_path)

            result = table_engine(img)
            # save_structure_res(result, save_folder, os.path.basename(image.name).split('.')[0])
            for line in result:
                file_content += f"{line['res']['html']}\n"
    return file_content


def image(file):
    file_content = ''
    image_file = Image.open(file)
    img = np.array(image_file)
    # img = cv2.imread(img_array)
    result = table_engine(img)
    for line in result:
        file_content += f"{line['res']['html']}\n"
    print('file_content:', file_content)
    return file_content

CNOCR

使用CNOCR进行解析

依赖如下:

代码语言:javascript
复制
pip3 install cnocr
pip3 install onnxruntime

代码实现如下,效果一般

代码语言:javascript
复制
def image2():
    from cnocr.utils import read_img
    from cnocr import CnOcr

    ocr = CnOcr()
    img_path = 'books.jpg'
    img = read_img(img_path)
    res = ocr.ocr(img)
    for r in res:
        print(f'{r["text"]}, {r["score"]}')

Streamlit构建前端

使用Streamlit构建前端的完整代码如下:

代码语言:javascript
复制
import copy
import PyPDF2
import numpy as np
import openai
import streamlit as st
from PIL import Image
import cv2
import tempfile
from paddleocr import PPStructure, save_structure_res

table_engine = PPStructure(layout=False, show_log=True)


def pdf(file):
    pdf_reader = PyPDF2.PdfReader(file)
    file_content = ''
    for page in pdf_reader.pages:
        file_content += page.extract_text().strip() + '\n'
        for image in page.images:
            with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_image:
                temp_image.write(image.data)
                temp_image_path = temp_image.name
            img = cv2.imread(temp_image_path)

            result = table_engine(img)
            # save_structure_res(result, save_folder, os.path.basename(image.name).split('.')[0])
            for line in result:
                file_content += f"{line['res']['html']}\n"
    return file_content


def image(file):
    file_content = ''
    image_file = Image.open(file)
    img = np.array(image_file)
    # img = cv2.imread(img_array)
    result = table_engine(img)
    for line in result:
        file_content += f"{line['res']['html']}\n"
    print('file_content:', file_content)
    return file_content

# 设置OpenAI API凭证
openai.api_key = "sk-xxx"

# 加载聊天记录
if "messages" not in st.session_state:
    st.session_state.messages = []
    st.session_state.hidden_messages = []

# 加载最后一个文件ID
if "last_file_id" not in st.session_state:
    st.session_state.last_file_id = ""

# 上传文件
uploaded_file = st.file_uploader("上传文件:", type=["png", "jpg", "pdf", "excel", "xls", "doc"])
if uploaded_file is not None:
    if uploaded_file.file_id != st.session_state.last_file_id:
        st.session_state.last_file_id = uploaded_file.file_id
        st.session_state.messages = []
        print('uploaded_file:', uploaded_file)
        with st.chat_message("user"):
            st.markdown("分析中,请等待...")
        file_suffix = uploaded_file.type.split("/")[1]
        messages = copy.deepcopy(st.session_state.messages)
        if file_suffix == "png" or file_suffix == "jpg" or file_suffix == "jpeg":
            st.session_state.messages.append({"role": "user", "image": uploaded_file})
            file_content = image(uploaded_file)
        else:
            file_content = pdf(uploaded_file)

        prompt = "你是一个文档助手,我将传递给你一个文档内容,在下次交互时用户才会开始提问,你只需要回答是否明白。下面的所有内容均为文档内容:\n" + file_content
        messages.append({"role": "user", "content": prompt})
        st.session_state.hidden_messages.append({"pos": len(st.session_state.messages), "role": "user", "content": prompt})
        print("messages:", messages)
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo-16k",
            messages=messages,
        )
        reply = response.choices[0].message.content.strip()
        print('file reply:', reply)
        st.session_state.messages.append({"role": "assistant", "content": "可以开始提问了。"})

        for message in st.session_state.messages:
            with st.chat_message(message["role"]):
                if "content" in message:
                    st.markdown(message["content"])
                if "image" in message:
                    st.image(message["image"], caption='上传的图片')

# 用户输入
if user_input := st.chat_input("请输入内容..."):
    st.session_state.messages.append({"role": "user", "content": user_input})
    messages = []
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            if "content" in message:
                st.markdown(message["content"])
                messages.append(message)
            if "image" in message:
                st.image(message["image"], caption='上传的图片')
    for hidden_message in st.session_state.hidden_messages:
        messages.insert(hidden_message["pos"], {"role": hidden_message["role"], "content": hidden_message["content"]})
    print("chat messages:", messages)
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo-16k",
        messages=messages,
    )
    reply = response.choices[0].message.content.strip()
    st.session_state.messages.append({"role": "assistant", "content": reply})
    with st.chat_message("assistant"):
        st.markdown(reply)

参考:https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.7/ppstructure/docs/quickstart.md

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • PaddleOCR
  • CNOCR
  • Streamlit构建前端
相关产品与服务
文字识别
文字识别(Optical Character Recognition,OCR)基于腾讯优图实验室的深度学习技术,将图片上的文字内容,智能识别成为可编辑的文本。OCR 支持身份证、名片等卡证类和票据类的印刷体识别,也支持运单等手写体识别,支持提供定制化服务,可以有效地代替人工录入信息。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档