硅光芯片有望于应用于航天系统中的数据通信,但是外太空中的环境与数据中心的环境差异巨大,充斥着电磁辐射与高能粒子,光器件的性能是否会受影响?美国Delaware大学研究组联合II-VI公司、NASA等多家机构,经过一系列系统的对比试验,给出了初步的测试结果,其结果发表在2024年最新一期的Science Advances上,文章标题为“Space-qualifying silicon photonic modulators and circuits”。小豆芽这篇笔记对相关实验结果做一个介绍,供大家参考。
研究人员选取了AIM Photonics和IME这两家流片厂的硅光芯片,主要包括一颗包含微环谐振器的无源芯片(AIM Photonics)、两颗包含MZM(Mach-Zehnder modulator)和微环调制器MRM (micro-ring modulator)的有源芯片(IME)。为了保护光芯片免遭一些微小陨石的撞击,芯片包裹在一层铝箔纸内。样品被放置在国际空间站外侧的MISSE-FF平台上,如下图所示,其接受来自太空环境的辐射,暴露时间接近11个月。
(图片来自文献1)
对于MRM和MZM这两种类型的调制器,其辐射前后的对比测试结果如下图所示。MRM光谱的共振波长未发生明显改变,但ER从24dB下降到14dB,Q值从36000减小到25000。MZM的光谱波峰波谷在辐照前后也没有发生明显改变,但ER从26dB下降到17.5dB。
(图片来自文献1)
调制器ER的改变,说明掺杂光波导在辐照前后的传输损耗发生改变。研究人员通过MZM光谱中波长和ER的变化信息,提取出折射率实部与虚部的改变量,如下图所示。可以看出折射率实部变化量比较小,而虚部变化约为1e-3,对应传输损耗20dB/cm的改变。这对链路损耗的影响较大。而无源光波导的传输损耗在辐照前后未发生改变。
(图片来自文献1)
研究人员进一步表征了调制器电学性质在辐照前后的对比,如下图所示。调制器的电容和串联电阻在辐照前后未发生明显的变化,说明载流子迁移率辐照前后未发生变化。但IV曲线发生改变,对应于载流子寿命发生改变。MZM和MRM的3dB带宽在辐照后变大,这也是载流子寿命变小导致的。
(图片来自文献1)
由于部分结果与地面辐照的实验结果不太一致,研究人员给出了定性的微观解释,如下图所示。外太空环境下,辐射的质子能量较大,大于10MeV, 会将硅原子中的共价键打断,形成悬空键(dangling bonds),而质子本身作为带隙中的缺陷态,导致载流子寿命降低。而对于地面试验,辐照的质子能量相对较小,其导致Si原子发生位移,离开原来的位置,形成散射中心,从而导致载流子的迁移率变小。
(图片来自文献1)
简单总结一下,研究人员将硅光芯片暴露在外太空的辐射下。高能辐照后,无源波导的传输损耗未发生变化,而掺杂波导的传输损耗增加了近20dB/cm。由于辐射粒子能量大,未在Si材料中形成散射中心,载流子的迁移率没有改变,电容和串联电阻未发生改变,调制器的调制效率未发生改变。由于高能粒子的作用,在硅波导中形成了悬挂键,导致载流子寿命变小,进而EO带宽增加。该研究中没有涉及Ge探测器辐照前后性能的对比。该进展中主要集中于硅光器件在辐照前后的性能对比,没有硅光链路级的性能对比。但是传输损耗20dB/cm的变化,对link budget的影响很大,也会导致调制器的ER发生变化。这些都对硅光系统在外太空的工作带来了很大挑战。但是,这毕竟迈出了第一步,硅光芯片开始走向星辰大海。
文章中如果有任何错误和不严谨之处,还望大家不吝指出,欢迎大家留言讨论。目前三个微信群都已经满员,小豆芽已经新开了微信讨论群4,有需要技术讨论或者商务咨询合作的朋友可以直接添加我的个人微信photon_walker。
参考文献: 1. D. Mao, et.al., "Space-qualifying silicon photonic modulators and circuits", Science Advances 10, 9171(2024)