前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度学习框架:Pytorch与Keras的区别与使用方法

深度学习框架:Pytorch与Keras的区别与使用方法

作者头像
Nowl
发布2024-01-18 20:06:58
1750
发布2024-01-18 20:06:58
举报
文章被收录于专栏:NowlNowl_AINowlNowl_AI

Pytorch与Keras介绍

pytorch和keras都是一种深度学习框架,使我们能很便捷地搭建各种神经网络,但它们在使用上有一些区别,也各自有其特性,我们一起来看看吧

Pytorch

模型定义

我们以最简单的网络定义来学习pytorch的基本使用方法,我们接下来要定义一个神经网络,包括一个输入层,一个隐藏层,一个输出层,这些层都是线性的,给隐藏层添加一个激活函数Relu,给输出层添加一个Sigmoid函数

代码语言:javascript
复制
import torch
import torch.nn as nn


class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(1, 32)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(32, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.Sigmoid(x)
        return x

模型编译

我们在之前的机器学习文章中反复提到过,模型的训练是怎么进行的呢,要有一个损失函数与优化方法,我们接下来看看在pytorch中怎么定义这些

代码语言:javascript
复制
import torch.optim as optim


# 实例化模型对象
model = SimpleNet()
# 定义损失函数
criterion = nn.MSELoss()

# 定义优化器
learning_rate = 0.01
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

我们上面创建的神经网络是一个类,所以我们实例化一个对象model,然后定义损失函数为mse,优化器为随机梯度下降并设置学习率

模型训练

代码语言:javascript
复制
# 创建随机输入数据和目标数据
input_data = torch.randn((100, 1))  # 100个样本,每个样本有1个特征
target_data = torch.randn((100, 1))  # 100个样本,每个样本有1个目标值

# 训练模型
epochs = 100

for epoch in range(epochs):
    # 前向传播
    output = model(input_data)

    # 计算损失
    loss = criterion(output, target_data)

    # 反向传播和优化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

以上步骤是先创建了一些随机样本,作为模型的训练集,然后定义训练轮次为100次,然后前向传播数据集,计算损失,再优化,如此反复

输入格式

关于输入格式是很多人在实战中容易出现问题的,对于pytorch创建的神经网络,我们的输入内容是一个torch张量,怎么创建呢

代码语言:javascript
复制
data = torch.Tensor([[1], [2], [3]])

很简单对吧,上面这个例子创建了一个torch张量,有三组数据,每组数据有1个特征

我们可以把这个数据输入到训练好的模型中,得到输出结果,如果输出不是torch张量,代码就会报错

完整代码

代码语言:javascript
复制
import torch
import torch.nn as nn
import torch.optim as optim


# 定义一个简单的神经网络模型
class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(1, 32)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(32, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.sigmoid(x)
        return x



model = SimpleNet()
criterion = nn.MSELoss()

# 定义优化器
learning_rate = 0.01
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

# 创建随机输入数据和目标数据
input_data = torch.randn((100, 1))  # 100个样本,每个样本有1个特征
target_data = torch.randn((100, 1))  # 100个样本,每个样本有1个目标值

# 训练模型
epochs = 100

for epoch in range(epochs):
    # 前向传播
    output = model(input_data)

    # 计算损失
    loss = criterion(output, target_data)

    # 反向传播和优化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()


data = torch.Tensor([[1], [2], [3]])
prediction = model(data)

print(prediction)

可以看到模型输出了三个预测值

注意,这个任务本身没有意义,因为我们的训练集是随机生成的,这里主要学习框架的使用方法

Keras

我们在这里把和上面相同的神经网络结构使用keras框架实现一遍

模型定义

代码语言:javascript
复制
from keras.models import Sequential
from keras.layers import Dense


model = Sequential([
    Dense(32, input_dim=1, activation='relu'),
    Dense(1, activation='sigmoid')
])

注意这里也是一层输入层,一层隐藏层,一层输出层,和pytorch一样,输入层是隐式的,我们的输入数据就是输入层,上述代码定义了一个隐藏层,输入维度是1,输出维度是32,还定义了一个输出层,输入维度是32,输出维度是1,和pytorch环节的模型结构是一样的

模型编译

那么在Keras中模型又是怎么编译的呢

代码语言:javascript
复制
model.compile(loss='mse', optimizer='sgd')

非常简单,只需要这一行代码 ,设置损失函数为mse,优化器为随机梯度下降

模型训练

模型的训练也非常简单

代码语言:javascript
复制
# 训练模型
model.fit(input_data, target_data, epochs=100)

因为我们已经编译好了损失函数和优化器,在fit里只需要输入数据,输出数据和训练轮次这些参数就可以训练了

输入格式

对于Keras模型的输入,我们要把它转化为numpy数组,不然会报错

代码语言:javascript
复制
data = np.array([[1], [2], [3]])

完整代码

代码语言:javascript
复制
from keras.models import Sequential
from keras.layers import Dense
import numpy as np


# 定义模型
model = Sequential([
    Dense(32, input_dim=1, activation='relu'),
    Dense(1, activation='sigmoid')
])

# 创建随机输入数据和目标数据
input_data = np.random.randn(100, 1)  # 100个样本,每个样本有10个特征
target_data = np.random.randn(100, 1)  # 100个样本,每个样本有5个目标值

# 编译模型
model.compile(loss='mse', optimizer='sgd')
# 训练模型
model.fit(input_data, target_data, epochs=10)

data = np.array([[1], [2], [3]])

prediction = model(data)
print(prediction)

可以看到,同样的任务,Keras的代码量小很多

区别与使用场景

Keras代码量少,使用便捷,适用于快速实验和快速神经网络设计

而pytorch由于结构是由类定义的,可以更加灵活地组建神经网络层,这对于要求细节的任务更有利,同时,pytorch还采用动态计算图,使得模型的结构可以在运行时根据输入数据动态调整,但这个特点我还没有接触到,之后可能会详细讲解

结语

Keras和Pytorch都各有各的优点,请读者根据需求选择,同时有些深度学习教程偏向于使用某一种框架,最好都学习一点,以适应不同的场景

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-12-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Pytorch与Keras介绍
  • Pytorch
    • 模型定义
      • 模型编译
        • 模型训练
          • 输入格式
            • 完整代码
            • Keras
              • 模型定义
                • 模型编译
                  • 模型训练
                    • 输入格式
                      • 完整代码
                      • 区别与使用场景
                      • 结语
                      领券
                      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档