前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >GraphDTA论文代码复现

GraphDTA论文代码复现

作者头像
Tom2Code
发布2024-01-26 15:32:18
2811
发布2024-01-26 15:32:18
举报
文章被收录于专栏:Tom

今天给大家介绍

一种名为 GraphDTA 的新模型,它将药物表示为图,并使用图神经网络来预测药物-靶点亲和力。我们的研究表明,图神经网络不仅能比非深度学习模型更好地预测药物与靶点的亲和力,而且还优于其他深度学习方法。我们的研究结果证实,深度学习模型适用于药物-靶点结合亲和力预测,而将药物表示为图可以带来进一步的改进。

论文地址:https://doi.org/10.1093/bioinformatics/btaa921

论文就不多过介绍了:

网络结构:

药物分子是smlies分子式为输入,蛋白质的输入是以蛋白质序列为输入。

数据集使用的是davis和kiba数据集:

然后我们直接上代码:

先说一下Tom本地的环境:

  1. anaconda的虚拟环境,
  2. python版本是3.7

首先是安装依赖,这里Tom之前的环境里已经有了,所以这里就不演示了:

代码语言:javascript
复制
conda create -n geometric python=3
conda activate geometric
conda install -y -c conda-forge rdkit
conda install pytorch torchvision cudatoolkit -c pytorch
pip install torch-scatter==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.4.0.html
pip install torch-sparse==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.4.0.html
pip install torch-cluster==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.4.0.html
pip install torch-spline-conv==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.4.0.html
pip install torch-geometric

然后代码下载到本地,然后先转化数据集:

代码语言:javascript
复制
python create_data.py

应该是在把smiles分子式转化成图结构的数据。这一步很顺畅

然后下一步就是模型的训练:

代码语言:javascript
复制
python training.py 0 0 0

这里解释一下这三个参数,都是0,读者可能好奇这是什么意思,那我们来解释一下:

其中第一个参数是数据集索引,

第一个位置的参数:0/1 分别代表 "davis "或 "kiba";

第二个参数是模型索引,0/1/2/3 分别代表 GINConvNet、GATNet、GAT_GCN 或 GCNNet;

第三个参数是 cuda 索引,0/1 分别代表 "cuda:0 "或 "cuda:1"。请注意,您的实际 CUDA 名称可能与上述名称不同,因此请相应修改以下代码:

所以我们这里三个0代表了我们使用davis数据集并且使用的是图同构卷积层,并且使用我本机的第一块cuda显卡

输入指令然后开始训练:

ops!报错了:

代码语言:javascript
复制
OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into the program. 
That is dangerous, since it can degrade performance or cause incorrect results. The best thing to do is to 
ensure that only a single OpenMP runtime is linked into the process, e.g. by avoiding static linking of the 
OpenMP runtime in any library. As an unsafe, unsupported, undocumented workaround you can set the 
environment variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to continue to execute, 
but that may cause crashes or silently produce incorrect results. For more information, 
please see http://www.intel.com/software/products/support/.

这个代码的报错很常见,然后solution也很简单:

在报错的对应代码加上两句,

然后继续训练:

现在变的正常了:但是epoch太多啦

可以改的小一点 继续训练(本地训练时间成本太高)

epoch改成20 然后直至训练结束:

然后验证集的测试;

代码语言:javascript
复制
python training_validation.py 0 0 0

这里三个参数的含义还是和训练时的参数是一样的含义。

其实在训练结束之后,程序就已经将最好的模型保存到对应的文件夹下了,

我们加载一下这个模型,然后看看其结构:

其实模型的结构不复杂。

我们更focus的是如何将smiles分子式转化成图数据结构:

通过学习代码,可以看到作者是使用rdkit的chem库来实现这一点的:

代码语言:javascript
复制
def smile_to_graph(smile):
    mol = Chem.MolFromSmiles(smile)
    
    c_size = mol.GetNumAtoms()

    features = []
    for atom in mol.GetAtoms():
        feature = atom_features(atom)
        features.append( feature / sum(feature) )

    edges = []
    for bond in mol.GetBonds():
        edges.append([bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()])
    g = nx.Graph(edges).to_directed()
    edge_index = []
    for e1, e2 in g.edges:
        edge_index.append([e1, e2])
        
    return c_size, features, edge_index

这个小函数 就帮助我们从smiles分子式中提取了边和节点还有特征。

模型的数据集的格式是这样的:

分别是smiles和蛋白质序列还有亲和力数据

这个程序更有意思的一个点就是计算一致性指数consistency index

代码语言:javascript
复制
def ci(y,f):
    ind = np.argsort(y)
    y = y[ind]
    f = f[ind]
    i = len(y)-1
    j = i-1
    z = 0.0
    S = 0.0
    while i > 0:
        while j >= 0:
            if y[i] > y[j]:
                z = z+1
                u = f[i] - f[j]
                if u > 0:
                    S = S + 1
                elif u == 0:
                    S = S + 0.5
            j = j - 1
        i = i - 1
        j = i-1
    ci = S/z
    return ci

感觉有点像是js的加密函数一样 ,但是其实不复杂。这里顺便介绍一下CI:

emm 已经写了一上午啦,那今天这篇文章先到这里,下次我们继续分享。

如果我的分享对您有帮助,还请点个在看和关注,谢谢。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-01-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Tom的小院 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
图数据库 KonisGraph
图数据库 KonisGraph(TencentDB for KonisGraph)是一种云端图数据库服务,基于腾讯在海量图数据上的实践经验,提供一站式海量图数据存储、管理、实时查询、计算、可视化分析能力;KonisGraph 支持属性图模型和 TinkerPop Gremlin 查询语言,能够帮助用户快速完成对图数据的建模、查询和可视化分析。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档