前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >PostgreSQL 查询语句开发写不好是必然,不是PG的锅

PostgreSQL 查询语句开发写不好是必然,不是PG的锅

作者头像
AustinDatabases
发布2024-01-26 19:19:31
1430
发布2024-01-26 19:19:31
举报
文章被收录于专栏:AustinDatabases

最近一个同学在群里咨询PG的语句执行的计划的问题,

当时指出了一些问题,基于时间的原因知道有问题,但没有说出具体的问题,当时也提到这样写语句,数据库基本上无法走执行计划,因为没有统计分析。

基于不能白说人,光便宜嘴的,做厚脸皮的坏习惯。这个问题的好好的掰扯掰扯。

开发人员为什么不愿意写SQL ,或写不好SQL。 实际开发人员的脑子和DBA的脑子,他不是一个脑子,DBA是逻辑性,严谨性,和条理性,开发人员的脑子,是跳跃的,同时是抽象的,以及面向对象的方式来处理事务的。所以一个SQL 语句他就不是一个面向对象的概念,程序人员,写不好SQL 是很正常的。

这位同学把SQL写成这样就是典型的对象思维模式。但基于数据库的过程性思维,这样做就是对数据库的大大不敬。

我用另一个类似的SQL来模拟一下,相关的语句的以及实际的执行计划

代码语言:javascript
复制
explain analyze SELECT f.film_id, f.title, COUNT(r.rental_id) AS num_rentals, AVG(p.amount) AS average_amount
FROM film f
JOIN inventory i ON f.film_id = i.film_id
JOIN rental r ON i.inventory_id = r.inventory_id
JOIN payment p ON r.rental_id = p.rental_id
GROUP BY f.film_id, f.title;


explain analyze
WITH inventory_w as materialized(select * from inventory),
rental_w as materialized (select * from rental),
payment_w as materialized(select * from payment)
SELECT f.film_id, f.title, COUNT(r.rental_id) AS num_rentals, AVG(p.amount) AS average_amount
FROM film f
JOIN inventory_w i ON f.film_id = i.film_id
JOIN rental_w r ON i.inventory_id = r.inventory_id
JOIN payment_w p ON r.rental_id = p.rental_id
GROUP BY f.film_id, f.title;

语句1 是正常的语句 ,语句2是这位同学的语句,我们在看一下语句的执行计划。

代码语言:javascript
复制
                                                                QUERY PLAN                                                           
     
-------------------------------------------------------------------------------------------------------------------------------------
-----
 HashAggregate  (cost=1194.15..1206.65 rows=1000 width=59) (actual time=20.612..21.072 rows=958 loops=1)
   Group Key: f.film_id
   Batches: 1  Memory Usage: 577kB
   ->  Hash Join  (cost=715.56..1084.68 rows=14596 width=29) (actual time=5.115..16.883 rows=14596 loops=1)
         Hash Cond: (i.film_id = f.film_id)
         ->  Hash Join  (cost=639.06..969.70 rows=14596 width=12) (actual time=4.794..13.561 rows=14596 loops=1)
               Hash Cond: (r.inventory_id = i.inventory_id)
               ->  Hash Join  (cost=510.99..803.28 rows=14596 width=14) (actual time=3.905..9.586 rows=14596 loops=1)
                     Hash Cond: (p.rental_id = r.rental_id)
                     ->  Seq Scan on payment p  (cost=0.00..253.96 rows=14596 width=10) (actual time=0.005..1.142 rows=14596 loops=1)
                     ->  Hash  (cost=310.44..310.44 rows=16044 width=8) (actual time=3.882..3.882 rows=16044 loops=1)
                           Buckets: 16384  Batches: 1  Memory Usage: 755kB
                           ->  Seq Scan on rental r  (cost=0.00..310.44 rows=16044 width=8) (actual time=0.004..1.746 rows=16044 loop
s=1)
               ->  Hash  (cost=70.81..70.81 rows=4581 width=6) (actual time=0.879..0.880 rows=4581 loops=1)
                     Buckets: 8192  Batches: 1  Memory Usage: 243kB
                     ->  Seq Scan on inventory i  (cost=0.00..70.81 rows=4581 width=6) (actual time=0.006..0.395 rows=4581 loops=1)
         ->  Hash  (cost=64.00..64.00 rows=1000 width=19) (actual time=0.318..0.318 rows=1000 loops=1)
               Buckets: 1024  Batches: 1  Memory Usage: 59kB
               ->  Seq Scan on film f  (cost=0.00..64.00 rows=1000 width=19) (actual time=0.009..0.192 rows=1000 loops=1)
 Planning Time: 0.936 ms
 Execution Time: 21.430 ms
(21 rows)

代码语言:javascript
复制
                                                                       QUERY PLAN                                                    
                   
-------------------------------------------------------------------------------------------------------------------------------------
-------------------
 HashAggregate  (cost=655305.94..655318.44 rows=1000 width=59) (actual time=40.379..40.798 rows=958 loops=1)
   Group Key: f.film_id
   Batches: 1  Memory Usage: 577kB
   CTE inventory_w
     ->  Seq Scan on inventory  (cost=0.00..70.81 rows=4581 width=16) (actual time=0.013..0.306 rows=4581 loops=1)
   CTE rental_w
     ->  Seq Scan on rental  (cost=0.00..310.44 rows=16044 width=36) (actual time=0.009..1.176 rows=16044 loops=1)
   CTE payment_w
     ->  Seq Scan on payment  (cost=0.00..253.96 rows=14596 width=26) (actual time=0.013..1.039 rows=14596 loops=1)
   ->  Merge Join  (cost=50245.36..453526.17 rows=26819274 width=35) (actual time=28.044..36.896 rows=14596 loops=1)
         Merge Cond: (p.rental_id = r.rental_id)
         ->  Sort  (cost=1301.47..1337.96 rows=14596 width=16) (actual time=7.088..8.035 rows=14596 loops=1)
               Sort Key: p.rental_id
               Sort Method: quicksort  Memory: 1069kB
               ->  CTE Scan on payment_w p  (cost=0.00..291.92 rows=14596 width=16) (actual time=0.018..3.860 rows=14596 loops=1)
         ->  Materialize  (cost=48943.89..50781.33 rows=367488 width=23) (actual time=20.568..24.275 rows=16048 loops=1)
               ->  Sort  (cost=48943.89..49862.61 rows=367488 width=23) (actual time=20.565..22.205 rows=16044 loops=1)
                     Sort Key: r.rental_id
                     Sort Method: quicksort  Memory: 1638kB
                     ->  Merge Join  (cost=1900.29..7435.52 rows=367488 width=23) (actual time=11.574..15.878 rows=16044 loops=1)
                           Merge Cond: (i.inventory_id = r.inventory_id)
                           ->  Sort  (cost=458.76..470.21 rows=4581 width=23) (actual time=2.943..3.163 rows=4581 loops=1)
                                 Sort Key: i.inventory_id
                                 Sort Method: quicksort  Memory: 550kB
                                 ->  Hash Join  (cost=76.50..180.20 rows=4581 width=23) (actual time=0.303..2.118 rows=4581 loops=1)
                                       Hash Cond: (i.film_id = f.film_id)
                                       ->  CTE Scan on inventory_w i  (cost=0.00..91.62 rows=4581 width=6) (actual time=0.014..0.983 
rows=4581 loops=1)
                                       ->  Hash  (cost=64.00..64.00 rows=1000 width=19) (actual time=0.280..0.281 rows=1000 loops=1)
                                             Buckets: 1024  Batches: 1  Memory Usage: 59kB
                                             ->  Seq Scan on film f  (cost=0.00..64.00 rows=1000 width=19) (actual time=0.007..0.154 
rows=1000 loops=1)
                           ->  Sort  (cost=1441.53..1481.64 rows=16044 width=8) (actual time=8.621..10.039 rows=16044 loops=1)
                                 Sort Key: r.inventory_id
                                 Sort Method: quicksort  Memory: 1137kB
                                 ->  CTE Scan on rental_w r  (cost=0.00..320.88 rows=16044 width=8) (actual time=0.012..4.703 rows=16
044 loops=1)
 Planning Time: 1.318 ms
 Execution Time: 41.886 ms
(36 rows)

这里我们先看正常的语句,他先找到的 rental 表并对其进行了扫描,然后对payment 进行扫描,然后将两个表中的需要进行对接的部分进行hash 桶操作,然后进hash join ,然后在对inventory 进行扫描并再次产生hash桶,然后将结果再次hash join ,整体的cost 并不很高。

反观在语句中直接进行物化视图的方式,可以看到整体的cost 出奇的高整体的执行计划也变化了,从最后进行inventory的处理,变成一开始就对inventory 进行处理,后续处理的顺序也是按照生成执行计划,并且执行中的执行计划更改为merge join.

从这两点看

1 带有物化cte 方式的语句,并未走好的执行计划

2 没有走好的执行计划,有一点在这里,有可能是因为无法获得有效的统计信息。

同时还可以通过去掉物化的同样的语句来证明这点。我看可以看下面的语句,去掉了物化后,执行计划变得正常和健康了。

代码语言:javascript
复制
dvdrental=# explain analyze
dvdrental-# WITH inventory_w as (select * from inventory),
dvdrental-# rental_w as  (select * from rental),
dvdrental-# payment_w as (select * from payment)
dvdrental-# SELECT f.film_id, f.title, COUNT(r.rental_id) AS num_rentals, AVG(p.amount) AS average_amountdvdrental-# FROM film f
dvdrental-# JOIN inventory_w i ON f.film_id = i.film_id
dvdrental-# JOIN rental_w r ON i.inventory_id = r.inventory_id
dvdrental-# JOIN payment_w p ON r.rental_id = p.rental_id
dvdrental-# GROUP BY f.film_id, f.title;
                                                               QUERY PLAN                                
                               
---------------------------------------------------------------------------------------------------------
-------------------------------
 HashAggregate  (cost=1194.15..1206.65 rows=1000 width=59) (actual time=19.510..19.927 rows=958 loops=1)
   Group Key: f.film_id
   Batches: 1  Memory Usage: 577kB
   ->  Hash Join  (cost=715.56..1084.68 rows=14596 width=29) (actual time=5.849..16.226 rows=14596 loops=
1)
         Hash Cond: (inventory.film_id = f.film_id)
         ->  Hash Join  (cost=639.06..969.70 rows=14596 width=12) (actual time=5.263..12.812 rows=14596 l
oops=1)
               Hash Cond: (rental.inventory_id = inventory.inventory_id)
               ->  Hash Join  (cost=510.99..803.28 rows=14596 width=14) (actual time=3.401..8.266 rows=14
596 loops=1)
                     Hash Cond: (payment.rental_id = rental.rental_id)
                     ->  Seq Scan on payment  (cost=0.00..253.96 rows=14596 width=10) (actual time=0.008.
.1.101 rows=14596 loops=1)
                     ->  Hash  (cost=310.44..310.44 rows=16044 width=8) (actual time=3.369..3.369 rows=16
044 loops=1)
                           Buckets: 16384  Batches: 1  Memory Usage: 755kB
                           ->  Seq Scan on rental  (cost=0.00..310.44 rows=16044 width=8) (actual time=0.
007..1.534 rows=16044 loops=1)
               ->  Hash  (cost=70.81..70.81 rows=4581 width=6) (actual time=1.851..1.852 rows=4581 loops=
1)
                     Buckets: 8192  Batches: 1  Memory Usage: 243kB
                     ->  Seq Scan on inventory  (cost=0.00..70.81 rows=4581 width=6) (actual time=0.009..
0.879 rows=4581 loops=1)
         ->  Hash  (cost=64.00..64.00 rows=1000 width=19) (actual time=0.579..0.579 rows=1000 loops=1)
               Buckets: 1024  Batches: 1  Memory Usage: 59kB
               ->  Seq Scan on film f  (cost=0.00..64.00 rows=1000 width=19) (actual time=0.015..0.312 ro
ws=1000 loops=1)
 Planning Time: 2.198 ms
 Execution Time: 20.267 ms

所以这个同学在语句中添加这个物化视图,应该是从解耦的角度出发的,但出发了表在建立时和语句执行在一个事务里面,这些表并未有统计分析的数据,更不要提索引,所以没有统计分析的数据是无法通过cost来进行判断执行计划应该怎么走。这里建议去掉物化视图,在这个语句。

如果要解耦,可以写成一个事务的方式来执行,我们可以看,这里新建的物化视图,然后在查询的方案,也比原来的方案要快 50% 这还是在没有建立索引的情况下。

代码语言:javascript
复制
dvdrental=# begin;
BEGIN
dvdrental=*# 
dvdrental=*# create MATERIALIZED VIEW inventory_t as select * from inventory;
SELECT 4581
dvdrental=*# create MATERIALIZED VIEW rental_t as select * from rental;
SELECT 16044
dvdrental=*# create MATERIALIZED VIEW payment_t as select * from payment;
SELECT 14596
dvdrental=*# 
dvdrental=*# 
dvdrental=*# 
dvdrental=*# explain analyze SELECT f.film_id, f.title, COUNT(r.rental_id) AS num_rentals, AVG(p.amount) AS average_amount
dvdrental-*# FROM film f
dvdrental-*# JOIN inventory_t i ON f.film_id = i.film_id
dvdrental-*# JOIN rental_t r ON i.inventory_id = r.inventory_id
dvdrental-*# JOIN payment_t p ON r.rental_id = p.rental_id
dvdrental-*# GROUP BY f.film_id, f.title;
                                                                          QUERY PLAN                     
                                                      
---------------------------------------------------------------------------------------------------------
------------------------------------------------------
 Finalize GroupAggregate  (cost=302435.43..304591.28 rows=1000 width=59) (actual time=26.798..27.974 rows
=958 loops=1)
   Group Key: f.film_id
   ->  Gather Merge  (cost=302435.43..304558.78 rows=2000 width=59) (actual time=26.771..27.129 rows=958 
loops=1)
         Workers Planned: 2
         Workers Launched: 2
         ->  Sort  (cost=302434.41..302436.91 rows=1000 width=59) (actual time=8.822..8.839 rows=319 loop
s=3)
               Sort Key: f.film_id
               Sort Method: quicksort  Memory: 159kB
               Worker 0:  Sort Method: quicksort  Memory: 25kB
               Worker 1:  Sort Method: quicksort  Memory: 25kB
               ->  Partial HashAggregate  (cost=302372.08..302384.58 rows=1000 width=59) (actual time=8.5
99..8.726 rows=319 loops=3)
                     Group Key: f.film_id
                     Batches: 1  Memory Usage: 577kB
                     Worker 0:  Batches: 1  Memory Usage: 73kB
                     Worker 1:  Batches: 1  Memory Usage: 73kB
                     ->  Parallel Hash Join  (cost=1430.74..201270.21 rows=13480249 width=35) (actual tim
e=4.102..7.594 rows=4865 loops=3)
                           Hash Cond: (r.rental_id = p.rental_id)
                           ->  Merge Join  (cost=1185.04..3978.22 rows=183555 width=23) (actual time=2.57
7..4.661 rows=5348 loops=3)
                                 Merge Cond: (r.inventory_id = i.inventory_id)
                                 ->  Sort  (cost=743.54..763.39 rows=7938 width=8) (actual time=1.671..2.
194 rows=5348 loops=3)
                                       Sort Key: r.inventory_id
                                       Sort Method: quicksort  Memory: 1137kB
                                       Worker 0:  Sort Method: quicksort  Memory: 25kB
                                       Worker 1:  Sort Method: quicksort  Memory: 25kB
                                       ->  Parallel Seq Scan on rental_t r  (cost=0.00..229.38 rows=7938 
width=8) (actual time=0.004..0.576 rows=5348 loops=3)
                                 ->  Sort  (cost=441.50..453.06 rows=4625 width=23) (actual time=2.707..3
.459 rows=16041 loops=1)
                                       Sort Key: i.inventory_id
                                       Sort Method: quicksort  Memory: 550kB
                                       ->  Hash Join  (cost=76.50..159.95 rows=4625 width=23) (actual tim
e=0.553..2.082 rows=4581 loops=1)
                                             Hash Cond: (i.film_id = f.film_id)
                                             ->  Seq Scan on inventory_t i  (cost=0.00..71.25 rows=4625 w
idth=6) (actual time=0.023..0.363 rows=4581 loops=1)
                                             ->  Hash  (cost=64.00..64.00 rows=1000 width=19) (actual tim
e=0.516..0.516 rows=1000 loops=1)
                                                   Buckets: 1024  Batches: 1  Memory Usage: 59kB
                                                   ->  Seq Scan on film f  (cost=0.00..64.00 rows=1000 wi
dth=19) (actual time=0.009..0.370 rows=1000 loops=1)
                           ->  Parallel Hash  (cost=169.20..169.20 rows=6120 width=16) (actual time=1.390
..1.390 rows=4865 loops=3)
                                 Buckets: 16384  Batches: 1  Memory Usage: 832kB
                                 ->  Parallel Seq Scan on payment_t p  (cost=0.00..169.20 rows=6120 width
=16) (actual time=0.011..1.697 rows=14596 loops=1)
 Planning Time: 0.823 ms
 Execution Time: 28.579 ms
(39 rows)

所以结论:在语句执行中,不要在一个原子性的操作中,有建立表的活动,这样操作会让新建立的表并未有明确的统计信息协助处理查询。

同时后面这个同学又提出了即使这样改完,语句的执行效率还是不高的问题,提到了隐士转换的问题。

隐士转换的问题,主要发生在

由于查询条件中的变量,和对应查询中的字段column之间的类型不匹配而发生的变量值重新转换格式的问题,这里PG是支持自动进行转换的,但有的时候,你不能确定他转换的type 和实际的type 是否一致,而不一致就会导致执行计划无法正确,在有索引的情况下,也因为类型不匹配而导致的全表扫描或其他问题。

如果避免让数据库自己进行类型的转换,可以在自己的查询的语句值后面标定你的数据类型。如:下面的例子,可以看到,在有索引的情况下

INT ,BIGINT, NUMBERIC 都可以在标定的情况下走索引,而float则不可以,说明在float转换后,无法和原有的值进行匹配导致走了并行的扫描。

SQL的语句撰写本来并不复杂,而基于开发人员在SQL上的思维模式,都在面向对象化的思维处理,都想一条SQL解决问题的思路,以及不注意语句撰写中那些会导致无法走可以优化的执行计划,等等这些问题,会导致如上同学的一些问题。

代码语言:javascript
复制
dvdrental=# explain analyze select * from payment where amount = (888::numeric(5,2));
                                                      QUERY PLAN                                         
             
---------------------------------------------------------------------------------------------------------
-------------
 Index Scan using idx_payment on payment  (cost=0.29..8.30 rows=1 width=26) (actual time=0.014..0.015 row
s=1 loops=1)
   Index Cond: (amount = 888.00::numeric(5,2))
 Planning Time: 0.180 ms
 Execution Time: 0.029 ms
(4 rows)

dvdrental=# explain analyze select * from payment where amount = (888::int);
                                                      QUERY PLAN                                         
             
---------------------------------------------------------------------------------------------------------
-------------
 Index Scan using idx_payment on payment  (cost=0.29..8.30 rows=1 width=26) (actual time=0.016..0.017 row
s=1 loops=1)
   Index Cond: (amount = '888'::numeric)
 Planning Time: 0.214 ms
 Execution Time: 0.033 ms
(4 rows)

dvdrental=# explain analyze select * from payment where amount = (888::bigint);
                                                      QUERY PLAN                                         
             
---------------------------------------------------------------------------------------------------------
-------------
 Index Scan using idx_payment on payment  (cost=0.29..8.30 rows=1 width=26) (actual time=0.015..0.017 row
s=1 loops=1)
   Index Cond: (amount = '888'::numeric)
 Planning Time: 0.189 ms
 Execution Time: 0.031 ms
(4 rows)

dvdrental=# explain analyze select * from payment where amount = (888::float);
                                                     QUERY PLAN                                          
           
---------------------------------------------------------------------------------------------------------
-----------
 Gather  (cost=1.00..273.23 rows=73 width=26) (actual time=4.008..8.529 rows=1 loops=1)
   Workers Planned: 2
   Workers Launched: 2
   ->  Parallel Seq Scan on payment  (cost=0.00..199.23 rows=30 width=26) (actual time=1.278..1.279 rows=
0 loops=3)
         Filter: ((amount)::double precision = '888'::double precision)
         Rows Removed by Filter: 4865
 Planning Time: 0.227 ms
 Execution Time: 8.550 ms
(8 rows)
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-01-25,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AustinDatabases 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档