前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >全志R128硬件设计指南①

全志R128硬件设计指南①

作者头像
阿志小管家
发布2024-02-02 19:50:22
5490
发布2024-02-02 19:50:22
举报
文章被收录于专栏:全志嵌入式那些事

原理图设计

硬件系统框图

R128是一颗专为“音视频解码”而打造的全新高集成度 SoC,主要应用于智能物联和专用语音交互处理解决方案。

  • 单片集成 MCU+RISCV+DSP+CODEC+WIFI/BT+PMU,提供生态配套成熟、完善的用于系统、应用和网络连接开发的高效算力;
  • 集成 8MB/16MB/32MB PSRAM,为音视频解码、大容量存储、扫码以及网络连接提供充裕的高容量、高带宽的内存支持;
  • 拥有丰富的音频接口 IIS/PCM、OWA、DMIC、LINEOUT、MICIN 以及通用通讯接口 IIC、UART、SDIO、 SPI、ISO7816卡接口;同时支持 U 盘、SD卡、IR-TX/RX;
  • 内置 LDO、GPADC、LEDC,简化系统方案设计,降低 BOM成本。
image-20230319110055183
image-20230319110055183
硬件系统基本工作原理

R128硬件系统基本工作流程如下:

  • 硬件系统正常上电,主控复位之后,CPU开始执行 BROM固化代码,对系统资源和关键外设进行配置及初始化,包括电源,时钟,总线,复位,存储接口等。
  • 根据配置,在 BROM阶段将系统初始化信息(串口、PSRAM等)从存储介质读取到系统 SRAM,进行芯片及系统的进一步详细配置和初始化工作;执行完 Boot0 程序后进入 boot 阶段。
  • 从外部存储介质中读取下一阶段需要的软件代码,启动操作系统,并对系统资源和外设进行管理。
  • 操作系统启动之后,根据产品不同需求加载相关启动,比如 USB、音频、WIFI、显示、蓝牙等模块,最终完成开机启动,进入普通操作界面。
  • 系统支持 watchdog 应用监视系统的运行,当程序跑飞或者发生死循环时,watchdog模块会发出一个复位信号,使 SOC复位,软件系统重新启动。

R128硬件系统组成如下表:

系统

说明

CPU小系统

时钟,复位,中断,系统配置

存储系统

PSRAM,SPI NAND/SPI NOR/EMMC/SD CARD

音频系统

MIC IN、FMIN、IIS/PCM/TDM、DMIC、LINEOUT

输入输出子系统

RGB、SD CARD、USB OTG/HOST、TWI、UART、PWM、GPADC、TPADC、CSI、 IR TX/RX 等

电源系统

DCDC、LDO

无线

WIFI/BT

其他

功放、LED

CPU小系统

R128 CPU小系统包括时钟系统,系统配置 PIN、复位系统和 Debug 部分。

时钟系统信号PIN说明

R128 硬件系统包含 DCXO 40M/RTC 32.768K 两个时钟,对应时钟信号说明如表所示。

信号名

信号描述

应用说明

HXTAL_IN

DCXO晶振输入

默认使用 40M晶振,频率误差为 10PPM;

HXTAL_OUT

DCXO晶振输出

默认使用 40M晶振,频率误差为 10PPM;

LXTAL_IN

32K晶振输入

32.768K晶振电路,频率误差为 20PPM

LXTAL_OUT

32K晶振输出

32.768K晶振电路,频率误差为 20PPM

RTC 32.768K时钟可以从内部 RC振荡电路产生,可不使用外部 32K晶振。

小系统配置说明

R128小系统配置 PIN说明如表所示。

信号名

信号说明

应用说明

RESET

system reset

1,系统复位 PIN 2,Watchdog 输出 PIN

CHIP-PWD

Chip power down/System reset

1,内部 PMU 下电控制 pin; 2,系统复位 pin

PA1/FEL0

FEL功能选择 pin 0

当[FEL0,FEL1]= 00时,SOC进入 FEL升级状态

PA2/FEL1

FEL功能选择 pin 1

当[FEL0,FEL1]= 00时,SOC进入 FEL升级状态

  • RESET和 CHIP-PWD均可实现系统复位功能,但 CHIP-PWD包含 R128内部 PMU掉电控制功能,可让R128实现上电复位功能。
  • RESET/CHIP-PWD信号上接下地电容默认为 1nF,用于滤波和增强 ESD 防护能力
  • 为避免 SOC启动时误进入升级状态,PA1/FEL0和 PA2/FEL1 不能同时接下拉电阻。
主晶振电路
  • R128 DCXO模块推荐使用 40M 晶振以获得更好的射频性能。
  • 晶振选型参考如下:
  • R128集成 WIFI/BT功能,为获得更好的射频性能,建议晶振选型频率容限与频率稳定性均≤ 10ppm
  • 晶体负载电容指标 CL,建议 CL≥10pF。CL过小会导致晶体温飘过大
  • 晶体驱动能力 DL,建议典型值 100uW,最大不超过 200uW。取值过小会影响晶体寿命。
  • 外挂匹配电容大小根据晶振规格和 PCB而定,要求匹配电容+板级杂散电容总值等于晶振规格要求的负载电容大小。
  • 串接电阻需要预留位置,便于调试振荡幅度处理 EMI 问题。
image-20230319105602288
image-20230319105602288

晶振参数不得随意更改,需保证晶体自身负载电容、外挂匹配电容、PCB走线负载电容三者匹配。

32.768K时钟电路
  • 支持内部 RCOSC时钟,支持 HOSC校准,满足 32.768K时钟输出。
  • 外挂 32.768K 晶振时,外挂匹配电容大小根据晶振规格和 PCB而定,要求匹配电容+板级杂散电容总值等于晶振规格要求的负载电容大小。
  • LXTAL_IN/LXTAL_OUT 之间并接的电阻,必须保留,用于对频率微调。
image-20230319105623149
image-20230319105623149

晶振参数不得随意更改,需保证晶体自身负载电容、外挂匹配电容、PCB走线负载电容三者匹配。

复位电路设计

R128可以选择使用外部复位 IC提供复位信号,也可以使用内部复位源。

  • 内部上电复位触发门槛:VBAT爬升至约 2.4V;
  • 内部下电复位触发门槛:VBAT跌落至 3.0V/2.9V/2.8V/2.7V/2.6V/2.5V(软件可配置),详见 R128用户手册;
  • 使用外部复位 IC 复位,时长不得低于 64ms;
  • RESET Pin放置 1nF电容。
image-20230319105642413
image-20230319105642413
DEBUG电路设计

R128支持 USB(OTG)、UART、JTAG与 SWD 等多种调试方式,客户可根据需要选择合适的调试方式,建议在设计时对相应的调试接口预留测试点方便后续调试验证。

image-20230319105717957
image-20230319105717957
电源系统设计
SOC端电源质量要求

R128集成 PMU,外部仅需提供 VBAT 电源即可满足 R128 电源应用需求,其他电源由内部 PMU 产生。

SOC端电源电容设计

R128 SOC端各电源要求滤波电容容值如下:

  • VDD_LX管脚建议预留放置 1个 2.2uF电容;
  • VDD_SENSE管脚建议放置 1个 4.7uF电容;
  • VDD_CLK、VDD18_ANA1、VDD18_TX1、VDD18_ANA2、VDD18_TX2电源 pin建议各放置 1个 100nF电容,靠近管脚放置;
image-20230319105840053
image-20230319105840053
  • VDD_DSP建议放置 1个 1uF电容,靠近管脚放置;
  • VDD_RTC建议放置 1个 1uF电容,靠近管脚放置;
  • VDD_SYS1、VDD_SYS2建议各放置 1 个 1uF电容,靠近管脚放置;
  • VDD_AON建议放置 1个 1uF电容,VDD12_PSM 建议放置 1 个 100nF 电容,靠近管脚放置;
  • VDD_3V3建议放置 1个 1uF电容, VDD33_LB1、VDD33_LB2 建议各放置 1 个 100nF 电容,靠近管脚放置;
  • VDD_IO1、VDD_IO2、VDD_IO_5VTOL建议各放置 1 个 100nF 电容,靠近管脚放置;
image-20230319105749537
image-20230319105749537
  • AVDD电源与 AGND之间至少 1个 2.2uF电容,靠近引脚放置。
上电时序设计

R128各模块供电采用内部 PMU,其上电时序如图所示,时序描述如下:

  • VBAT为 SOC外部电源输入,其上电至 2.4V附近触发内部 POR复位;
  • 完成 POR 复位后,PMU各路 DCDC、LDO按照下图所示时序进行上电;
image-20230319110147460
image-20230319110147460

当使用外部 DCDC 或 LDO为 R128 的 VDD_IO1、VDD_IO2和 VDD_IO_5VTOL进行供电时,为避免电源从 IO漏电导致 SOC启动失败,建议使用 EXT_LDO(pin VDD_3V3)对外部 DCDC或 LDO 进行时序控制。

下电时序设计

R128下电时序如图所示,时序描述如下:

  • R128内部集成掉电复位功能,通过检测 VBAT电压触发复位,可软件使能掉电复位功能和配置门槛电压,详见 R128 用户手册描述;
  • 复位信号拉低后,DXCO、RCOSC停止振荡,各路 DCDC、LDO停止输出。
image-20230319110206583
image-20230319110206583
PSRAM 电路设计

R128内置 PSRAM,无需外部电路,只需满足 R128 电源设计要求即可。

Flash 电路设计

R128支持合封 SPI Nor FLSAH,支持外挂 SPI Nand/Nor、eMMC,设计说明如下:

  • 使用合封 SPI Nor FLASH 时,VDD-IO1必须使用 3.3V电源;
  • 使用外挂 SPI Nand/Nor、eMMC 器件时,可选择从 PA24-PA29、PB4-PB7&PB14/15、PA2-PA7 三个地方启动;
  • 启动介质选择支持 Try 与 eFuse Select 两种方式;
  • Try 方式启动顺序为 SDC0->SPI NOR->SPI NAND->EMMC,该模式仅支持轮询 PA 口的启动介质
  • eFuse Select方式启动顺序由 eFuse决定,具体启动顺序及烧码值可定制
SPI NOR/NAND 参考设计
image-20230319110306002
image-20230319110306002
GPIO 电路设计

R128 有PA/PB 2 组GPIO,GPIO 逻辑电平与供电电压有关。

  • 未使用的GPIO 优先建议接地或者Floating,软件设定为disabled 状态;
  • IO 上拉电阻上拉电压选择IO 所在电源域。

GPIO 分组

控制器电源域

IO电源域

IO电压

PA0~PA14

VDD-SYS

VDD-IO2

3.3V/1.8V

PA18~PA23

VDD-SYS

VDD-IO2

3.3V/1.8V

PA16~PA17

VDD-SYS

VDD-IO-5VTOL

5V/3.3V/1.8V

PA15

VDD-SYS

VDD-IO1

3.3V/1.8V

PA24~PA29

VDD-SYS

VDD-IO1

3.3V/1.8V

PB0~PB15

VDD-SYS

VDD-IO1

3.3V/1.8V

LED电路设计

R128集成 LEDC功能,可以直接驱动集成式 LED。

集成式 LED一般供电范围是 3.5~5.3V,Vih必须大于 0.7*VDD,如 WS2812C。当 VDD为 5V供电时,Vih必须大于 3.5V,已超出 SOC IO输出电压范围。解决方案:

  • 5V供电串联 1N4148二极管,降低 VDD电压,理论 VDD电压为 4.3V,此时 Vih 大于 3V 即可;
  • 市场已有 5V 供电且支持 3.3V逻辑控制的集成式 LED,如 WS2128B-V4/V5。
USB电路设计

R128 USB接口具有 HOST和 OTG功能,在产品功能定义上需要注意区别。

  • 若使用 Micro USB 供电,建议在 VBUS上放置限流和防倒灌 IC、TVS 保护器件;
  • USB-ID 信号为 OTG 检测信号,上拉电压选择 USB-ID Pin所在电源域;
  • USB-ID 信号到 SOC端的 GPIO 串接 1K~1.5K电阻提升 ESD性能;
  • 建议在 VBUS 上放置稳压管和 TVS保护器件;
  • D+/D-信号线为高速信号线,并接的 TVS 要求低容值,否则影响数据传输,以小于 4pF 为宜;串接预留 5 电阻。
image-20230319104400094
image-20230319104400094
SD Card 电路设计
  • SDC0-CLK串接 33R电阻,靠近 SoC摆放;
  • SDC0-CMD和 SDC0-DET Pin芯片内部集成 15K上拉电阻,外部 10K上拉默认 NC;
  • SDC0-DET串接 1K电阻,减缓信号下冲和提供 IO ESD能力;
  • 靠近 SD 卡座,每个信号 Pin放置 ESD器件。
  • SD卡座电源 VDD预留串联 0R电阻,防止卡插入时,瞬间大电流烧卡。
image-20230319104427935
image-20230319104427935
音频电路设计
  • 3个 ADC,可支持 3 个差分 MIC 输入;
  • 2个 DAC,R128-S1/S2可支持差分立体声输出,R128-S3可支持单声道差分音频输出;
  • 支持 1 套 I2S/PCM 接口,支持 TDM模式,支持主从模式;
  • 支持 OWA 输出,兼容 SPDIF 协议;
  • 支持 DMIC 8 声道输入。

音频设计建议如下:

  • AVDD对地电容为 2.2uF;VRA1对地电容为 470nF;VRA2对地电容为 470nF;MBIAS对地电容为 2.2uF;
  • AVDD/VRA1/VRA2的 AGND通过 0R电阻单点到 GND;
image-20230319104449189
image-20230319104449189
  • MIC1-3建议组合成 2MIC+1AEC 电路;

MIC和 AEC参考设计如图所示。AEC 回路电阻电容参数与功放输出幅度和算法公司要求有关,参数以实际开发环境为准。

image-20230319104522030
image-20230319104522030
硅MIC参考电路
image-20230319104553805
image-20230319104553805
驻极体MIC参考电路
image-20230319104620844
image-20230319104620844
ADC电路设计

支持 1 路 GPADC 接口,12bit采样分辨率,9bit采样精度,单通道最高采样率为 1MHz,最大支持 8 通道,可以用作按键功能或采集电池电压使用。

  • GPADC 量程范围为 0~2.5V,应用时建议使用 0.2~2.3V作为输入检测电平;
  • 按键按键分压电阻,请使用推荐的阻值,如 5 个按键以下,推荐使用 1%精度电阻。添加按键时保证按键按下后,ADC网络电压范围为 0~1.08V,最小间隔大于 200mV。
image-20230319104731579
image-20230319104731579
LCD电路接口

R128 支持一路 RGB屏接口和一路 SPI屏接口。其中 RGB屏接口可支持并行 RGB666 模式(1024x768@60fps)、串行 RGB模式(800x480@60fps)和 i8080模式(800x480@60fps),各种模式下管脚功能描述如下表。

image-20230319110550636
image-20230319110550636

SPI屏支持以下几种模式:

3 线 1 DATA

3 线 2 DATA

4线1 DATA

4线2 DATA

2 DATA Lane

DBI-CSX

DBI-CSX

DBI-CSX

DBI-CSX

DBI-CSX

/

/

DBI-DCX

DBI-DCX

/

DBI-SCLK

DBI-SCLK

DBI-SCLK

DBI-SCLK

DBI-SCLK

DBI-SDA

DBI-SDO

DBI-SDA

DBI-SDO

DBI-SDA

/

DBI-SDI

/

DBI-SDI

WRX

DBI-TE

DBI-TE

DBI-TE

DBI-TE

DBI-TE

DBI接口与SPI1复用关系

SPI

DBI

SPI1-CS

DBI-CSX

SPI1-CLK

DBI-SCLK

SPI1-MOSI

DBI-SDO/SDA

SPI1-MISO

DBI-SDI(WRX)/TE/DC X

SPI1-HOLD

DBI-DCX/WRX

SPI1-WP

DBI-TE

CSI电路接口

PIN脚

CSI接口

说明

DVP

PA18/PB0

NCSI0-HSYNC

摄像头行同步

HSYNC

PA19/PB1

NCSI0-VSYNC

摄像头场同步

VSYNC

PA20/PB14

NCSI0-PCLK

摄像头像素时钟

PCLK

PA21/PB15

NCSI0-MCLK

摄像头主时钟

MCLK

PA22

NCSI0-D0

Parallel CSI Data

Y2

PA23

NCSI0-D1

Parallel CSI Data

Y3

PA27

NCSI0-D2

Parallel CSI Data

Y4

PA26

NCSI0-D3

Parallel CSI Data

Y5

PA29

NCSI0-D4

Parallel CSI Data

Y6

PA25

NCSI0-D5

Parallel CSI Data

Y7

PA24

NCSI0-D6

Parallel CSI Data

Y8

PA28

NCSI0-D7

Parallel CSI Data

Y9

射频端口设计

射频输出端口(ANT pin)无需匹配电路,但可预留天线 PI 型匹配电路。如上图所示。为了方便天线PI型匹配电路调试,需在射频输出端口与天线间预留 0Ω电阻 WR1。如图所示。

image-20230319105430932
image-20230319105430932

因 R128 芯片射频前端已设计滤波器用于射频认证时滤除谐波杂散,因此,硬件方案端只需要预留一个PI型匹配电路用于匹配天线,无需额外多预留一个 PI型滤波网络用于滤除谐波杂散。

原理图设计其他
  • I2C/TWI 最大支持 400Kbit/s 的传输速率,总线上加上拉电阻,推荐值为 2.0K~4.7K,上拉电源为对应 GPIO电源域,各设备地址不得有冲突;
  • GPIO分配时,请确保电平相匹配,上拉的电压域必须为此 GPIO的电源域,以防外设向 SOC漏电情况发生;
  • 串口调试电路 TX/RX 信号要加防倒灌电/隔离保护电路。可以选择 MOS管或二极管方案,二极管方案必须选择肖特基二极管。加工生产时为节约成本,MOS管和二极管隔离保护电路可以 NC,但板级至少要串接 100Ω电阻。
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-02-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 原理图设计
    • 硬件系统框图
      • 硬件系统基本工作原理
        • CPU小系统
          • 时钟系统信号PIN说明
          • 小系统配置说明
          • 主晶振电路
          • 32.768K时钟电路
          • 复位电路设计
          • DEBUG电路设计
        • 电源系统设计
          • SOC端电源质量要求
          • SOC端电源电容设计
          • 上电时序设计
          • 下电时序设计
        • PSRAM 电路设计
          • Flash 电路设计
            • SPI NOR/NAND 参考设计
          • GPIO 电路设计
            • LED电路设计
              • USB电路设计
                • SD Card 电路设计
                  • 音频电路设计
                    • ADC电路设计
                      • LCD电路接口
                        • DBI接口与SPI1复用关系
                      • CSI电路接口
                        • 射频端口设计
                          • 原理图设计其他
                          领券
                          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档