前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【目标跟踪】多目标跟踪sort (python 代码)

【目标跟踪】多目标跟踪sort (python 代码)

作者头像
读书猿
发布2024-02-05 15:21:11
2510
发布2024-02-05 15:21:11
举报
文章被收录于专栏:无人驾驶感知无人驾驶感知

前言

  1. 多目标跟踪 sort(Simple Online Realtime Tracking)是一种基于目标检测的跟踪。
  2. 根据我自己的理解把它分为个5步骤。
    1. 初始化航迹。当第一帧检测结果输入时,此时航迹(trackers)为空,此时航迹保存检测结果。等待下一帧检测结果输入。
    2. 预测。如果航迹不为空,航迹会预测一个 predict_box。
    3. 匹配。预测的一个predict_box 与此时进来的检测结果 detect_box 匈牙利匹配(代码计算的iou)。
    4. 更新。匹配成功的目标,用 detect_box 去修正 predict_box。未匹配成功的目标,重新起航迹或者舍弃。
    5. 输出结果,等待下一帧检测目标进来重复步骤 2,3,4。
  3. 对于算法细节这里不进行赘述。感兴趣可以参考博主往期博客。【目标跟踪】匈牙利算法 【目标跟踪】卡尔曼滤波(公式推导与代码)
  4. 想要 c++ 代码的朋友可以私信我交流。或者下一次写一篇,如果有机会的话(鬼脸jpg)。

python代码(带注释)

  • 代码输入:1、连续帧图片,2、每帧图片的检测结果。(需要数据的可以私信我)
  • 代码参考:git地址
  • 输出结果以视频形式保存

main.py文件

代码语言:javascript
复制
import os
import numpy as np
import cv2
from filterpy.kalman import KalmanFilter


def linear_assignment(cost_matrix):
    try:
        import lap
        _, x, y = lap.lapjv(cost_matrix, extend_cost=True)
        return np.array([[y[i], i] for i in x if i >= 0])  #
    except ImportError:
        from scipy.optimize import linear_sum_assignment
        x, y = linear_sum_assignment(cost_matrix)
        return np.array(list(zip(x, y)))


def iou_batch(bb_test, bb_gt):
    bb_gt = np.expand_dims(bb_gt, 0)
    bb_test = np.expand_dims(bb_test, 1)

    xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0])
    yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
    xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
    yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
    w = np.maximum(0., xx2 - xx1)
    h = np.maximum(0., yy2 - yy1)
    wh = w * h
    o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])
              + (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)
    return (o)


def convert_bbox_to_z(bbox):
    w = bbox[2] - bbox[0]
    h = bbox[3] - bbox[1]
    x = bbox[0] + w / 2.
    y = bbox[1] + h / 2.
    s = w * h
    r = w / float(h)
    return np.array([x, y, s, r]).reshape((4, 1))


def convert_x_to_bbox(x, score=None):
    w = np.sqrt(x[2] * x[3])
    h = x[2] / w
    if (score == None):
        return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4))
    else:
        return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape((1, 5))


class KalmanBoxTracker(object):
    count = 0

    def __init__(self, bbox):
        self.kf = KalmanFilter(dim_x=7, dim_z=4)
        # [center_x, center_y, s, r, center_x', center_y', s']  s = w * h  r = w / h  bbox 宽高比保持不变
        self.kf.F = np.array(
            [[1, 0, 0, 0, 1, 0, 0],
             [0, 1, 0, 0, 0, 1, 0],
             [0, 0, 1, 0, 0, 0, 1],
             [0, 0, 0, 1, 0, 0, 0],
             [0, 0, 0, 0, 1, 0, 0],
             [0, 0, 0, 0, 0, 1, 0],
             [0, 0, 0, 0, 0, 0, 1]])
        self.kf.H = np.array(
            [[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]])

        self.kf.R[2:, 2:] *= 10.
        self.kf.P[4:, 4:] *= 1000.
        self.kf.P *= 10.
        self.kf.Q[-1, -1] *= 0.01
        self.kf.Q[4:, 4:] *= 0.01

        self.kf.x[:4] = convert_bbox_to_z(bbox)
        self.time_since_update = 0
        self.id = KalmanBoxTracker.count
        KalmanBoxTracker.count += 1
        self.history = []
        self.hits = 0
        self.hit_streak = 0
        self.age = 0

    def update(self, bbox):
        self.time_since_update = 0
        self.history = []
        self.hits += 1
        self.hit_streak += 1
        self.kf.update(convert_bbox_to_z(bbox))

    def predict(self):
        if ((self.kf.x[6] + self.kf.x[2]) <= 0):
            self.kf.x[6] *= 0.0
        self.kf.predict()
        self.age += 1
        if (self.time_since_update > 0):
            self.hit_streak = 0
        self.time_since_update += 1
        self.history.append(convert_x_to_bbox(self.kf.x))
        return self.history[-1]

    def get_state(self):
        return convert_x_to_bbox(self.kf.x)


def associate_detections_to_trackers(detections, trackers, iou_threshold=0.3):
    if (len(trackers) == 0):
        return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 5), dtype=int)

    iou_matrix = iou_batch(detections, trackers)

    if min(iou_matrix.shape) > 0:
        a = (iou_matrix > iou_threshold).astype(np.int32)
        if a.sum(1).max() == 1 and a.sum(0).max() == 1:
            matched_indices = np.stack(np.where(a), axis=1)
        else:
            matched_indices = linear_assignment(-iou_matrix)
    else:
        matched_indices = np.empty(shape=(0, 2))

    unmatched_detections = []
    for d, det in enumerate(detections):
        if (d not in matched_indices[:, 0]):
            unmatched_detections.append(d)
    unmatched_trackers = []
    for t, trk in enumerate(trackers):
        if (t not in matched_indices[:, 1]):
            unmatched_trackers.append(t)

    matches = []
    for m in matched_indices:
        if (iou_matrix[m[0], m[1]] < iou_threshold):
            unmatched_detections.append(m[0])
            unmatched_trackers.append(m[1])
        else:
            matches.append(m.reshape(1, 2))
    if (len(matches) == 0):
        matches = np.empty((0, 2), dtype=int)
    else:
        matches = np.concatenate(matches, axis=0)

    return matches, np.array(unmatched_detections), np.array(unmatched_trackers)


class Sort(object):
    def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3):
        self.max_age = max_age
        self.min_hits = min_hits
        self.iou_threshold = iou_threshold
        self.trackers = []
        self.frame_count = 0

    def update(self, dets=np.empty((0, 5))):
        self.frame_count += 1
        # 根据上一帧航迹的框 预测当前帧的框.
        trks = np.zeros((len(self.trackers), 5))
        to_del = []
        ret = []
        for t, trk in enumerate(trks):
            pos = self.trackers[t].predict()[0]
            trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
            if np.any(np.isnan(pos)):
                to_del.append(t)
        trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
        for t in reversed(to_del):
            self.trackers.pop(t)

        # 匈牙利匹配 上一帧预测框与当前帧检测框进行 iou 匹配
        matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold)

        # 如果匹配上 则更新修正当前检测框
        for m in matched:
            self.trackers[m[1]].update(dets[m[0], :])

        # 如果检测框未匹配上,则当作新目标,新起航迹
        for i in unmatched_dets:
            trk = KalmanBoxTracker(dets[i, :])
            self.trackers.append(trk)
        i = len(self.trackers)
        for trk in reversed(self.trackers):
            d = trk.get_state()[0]
            if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
                ret.append(np.concatenate((d, [trk.id + 1])).reshape(1, -1))
            i -= 1
            # 如果超过self.max_age(3)帧都没有匹配上,则应该去除这个航迹
            if (trk.time_since_update > self.max_age):
                self.trackers.pop(i)
        if (len(ret) > 0):
            return np.concatenate(ret)
        return np.empty((0, 5))


if __name__ == '__main__':
    display, video_save = True, True  # 是否show,结果是否存视频
    max_age, min_hits, iou_threshold = 3, 3, 0.3  # sort算法参数
    colours = 255 * np.random.rand(32, 3)  # 随机生产颜色
    video = cv2.VideoWriter("video.mp4", cv2.VideoWriter_fourcc('m', 'p', '4', 'v'), 10,
                            (1920, 1080)) if video_save else None
    mot_tracker = Sort(max_age=max_age, min_hits=min_hits, iou_threshold=iou_threshold)  # 创建sort跟踪器
    seq_dets = np.loadtxt("det.txt", delimiter=',')  # 加载检测txt结果
    for frame in range(int(seq_dets[:, 0].max())):
        frame += 1  # 从1帧开始
        dets = seq_dets[seq_dets[:, 0] == frame, 2:7]
        dets[:, 2:4] += dets[:, 0:2]  # [x1,y1,w,h] to [x1,y1,x2,y2] 左上角x1,y1,w,h ——>左上角x1,y1,右下角x2,y2
        mot_tracker.update(dets)  # kalman 预测与更新
        trackers = mot_tracker.trackers
        image_path = os.path.join(".\\img", '%06d.jpg' % (frame))  # 图片路径
        image = cv2.imread(image_path)
        for d in trackers:
            x1, y1, w, h = d.get_state()[0]  # 获取 当前目标框状态
            id = d.id
            color = colours[int(id) % 32, :]
            color = (int(color[0]), int(color[1]), int(color[2]))
            cv2.rectangle(image, (int(x1), int(y1)), (int(w), int(h)), color, 3)  # 画框
            cv2.putText(image, str(int(id)), (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 1,
                        color, 3)  # 画id
        if display:
            cv2.namedWindow("show")
            cv2.imshow("show", image)
            cv2.waitKey(0)
        if video_save:
            video.write(image)

算法分析

  • 优点:速度,快,很快,非常快。1s可以处理超过1000帧检测结果。
  • 缺点:对于遮挡、以及非线性运动的物体(加减速或者转弯)跟踪效果差
  • 优化方向:优化方式有很多,下次再写博客分享,如果有机会的话鬼脸.jpg。
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-11-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • python代码(带注释)
  • 算法分析
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档