关于遗传算法的介绍请参考下面知乎的链接。
如何通俗易懂地解释遗传算法?有什么例子?- 知乎 (zhihu.com)
遗传算法 - 知乎 (zhihu.com)
下面是我根据遗传算法思想写的求解上图最优值问题的C++源码:
// my 1st 遗传算法
#include <math.h>
#include <array>
#include<vector>
#include <random>
#include <iostream>
using std::array, std::cout, std::endl, std::vector;
// 每个个体用 M * N个元素,元素值为0或1的数组表示
constexpr int M = 4;// 个体染色体数
constexpr int N = 4; //每个染色体上的基因点位数
constexpr int Qty = 100;// 种群大小
constexpr double reserve_rate = 0.05;//精英保留率
constexpr double elamilation_rate = 0.4;//末位淘汰率
// x 定义域(搜索范围)
constexpr double LSL = 0.0;
constexpr double USL = 9.0;
double f(double x)
{
return x + 10 * sin(5 * x) + 7 * cos(4 * x);
}
array<array<int, N>, M> generate_rand_individuality()
{
std::random_device rd;
std::default_random_engine eng(rd());
std::uniform_int_distribution<int> distr(0, 1);//生成0到1的之间的平均分布的随机整数
array<array<int, N>, M> I{};
for (int i = 0; i < M; i++)
{
for (int j = 0; j < N; j++)
{
I[i][j] = distr(eng);
}
}
return I;
}
void print_individuality(array<array<int, N>, M> I)
{
for (int i = 0; i < M; i++)
{
for (int j = 0; j < N - 1; j++)
{
cout << I[i][j] << ',';
}
cout << I[i][N - 1] << '\n';
}
cout << endl;
}
double decode(const array<array<int, N>, M> & I)
{
double result = LSL;
double Max_number = pow(2, M * N) - 1;
double sum = 0.0;
for (int i = 0; i < M; i++)
{
for (int j = 0; j < N; j++)
{
sum += I[i][j] * pow(2, i * N + j);
}
}
result += (USL - LSL) * sum / Max_number;
return result;
}
double assess(const array<array<int, N>, M> & I)
{
return f(decode(I));
}
array<array<int, N>, M> reproduce(const array<array<int, N>, M>& I1, const array<array<int, N>, M>& I2)
{
std::random_device rd;
std::default_random_engine eng(rd());
std::uniform_int_distribution<int> distr(0, 1);//生成0到1的之间的平均分布的随机整数
array<array<int, N>, M> I{};
for (int i = 0; i < M; i++)
{
for (int j = 0; j < N; j++)
{
if (I1[i][j] == I2[i][j]) I[i][j] = I1[i][j];
else I[i][j] = distr(eng);
}
}
return I;
}
struct Grater
{
bool operator()(const array<array<int, N>, M>& I1, const array<array<int, N>, M>& I2)
{
return assess(I1) > assess(I2);
}
};
vector<array<array<int, N>, M>> regroup(const vector<array<array<int, N>, M>>& group)
{
int top_qty = static_cast<int> (reserve_rate * Qty);
int bottom_qty = static_cast<int> (elamilation_rate * Qty);
vector<array<array<int, N>, M>> new_group{ group };
int i = top_qty;
for (int j = 0; j < Qty - bottom_qty; j+=2)
{
//除去淘汰的个体外,每两个个体强强结合,生两个仔...
new_group[i] = reproduce(group[j], group[j+1]);
new_group[i+1] = reproduce(group[j], group[j + 1]);
i += 2;
}
//淘汰的个体用随机产生的个体替代掉
for (int i = Qty - bottom_qty; i < Qty; i++)
{
new_group[i] = generate_rand_individuality();
}
return new_group;
}
int main()
{
//std::cout << f(7.0) << '\n';
//std::random_device rd;
//std::default_random_engine eng(rd());
//std::uniform_int_distribution<int> distr(0, 1);
//array<array<int, N>, M> a{ generate_rand_individuality() };
//array<array<int, N>, M> b{ generate_rand_individuality() };
//array<array<int, N>, M> c{};
//c = reproduce(a, b);
////array<array<int, N>, M> b{ 1,0,0,0 };
//print_individuality(a);
//cout << assess(a) << endl;
//print_individuality(b);
//cout << assess(b) << endl;
//print_individuality(c);
//cout << assess(c) << endl;
vector<array<array<int, N>, M>> group{};
for (int i = 0; i < Qty; i++)
{
group.push_back(generate_rand_individuality());
}
std::sort(group.begin(), group.end(), Grater());
// 打印初代评分
cout << "初代评分:" << endl;
for (auto &I : group)
{
cout << assess(I) << ", ";
}
cout << endl;
cout << endl;
//迭代
cout << "每代的第一名的得分:" << endl;
for(int i =0; i<100; i++)
{
group = regroup(group);
std::sort(group.begin(), group.end(), Grater());
cout << assess(group.at(0))<<"-> ";
}
cout << endl;
cout << endl;
// 打印迭代完成后的评分
cout << "迭代完成后的评分:" << endl;
for (auto& I : group)
{
cout << assess(I) << ", ";
}
cout << endl;
cout <<"迭代完成后的最优基因是" << endl;
print_individuality(group.at(0));//打印最优基因
double x = decode(group.at(0));
cout << "求得的x的值是" << x << endl;
cout << "此时 x 对应的函数值是" << f(x) << endl;
}
从上图可以看出,19次迭代后已经收敛。
下图是控制台的输出
本文分享自 Python可视化编程机器学习OpenCV 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!