前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >朴素贝叶斯原理

朴素贝叶斯原理

作者头像
@小森
发布2024-03-15 11:50:38
1010
发布2024-03-15 11:50:38
举报
文章被收录于专栏:xiaosen

朴素贝叶斯的介绍

朴素贝叶斯算法(Naive Bayes, NB) 是应用最为广泛的分类算法之一。它是基于贝叶斯定义和特征条件独立假设的分类器方法。由于朴素贝叶斯法基于贝叶斯公式计算得到,有着坚实的数学基础,以及稳定的分类效率。NB模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。

条件概率: 表示事件A在另外一个事件B已经发生条件下的发生概率,P(A|B)

在女神喜欢的条件下,职业是程序员的概率?

  1. 女神喜欢条件下,有 2、3、4、7 共 4 个样本
  2. 4 个样本中,有程序员 3、4 共 2 个样本
  3. 则 P(程序员|喜欢) = 2/4 = 0.5

联合概率: 表示多个条件同时成立的概率,P(AB) = P(A) P(B|A)

职业是程序员并且体型匀称的概率?

  1. 职业是程序员有 1、3、4 共 3 个样本,则其概率为:3/7
  2. 在职业是程序员,体型是匀称有 3 共 1 个样本,则其概率为:⅓
  3. 则即是程序员又体型匀称的概率为:3/7 * ⅓ = 1/7

联合概率 + 条件概率:

在女神喜欢的条件下,职业是程序员、体重超重的概率? P(AB|C) = P(A|C) P(B|AC)

  1. 喜欢的条件下,有 2、3、4、7 共 4 个样本
  2. 在这 4 个样本中,职业是程序员有 3、4 共 2 个样本,则其概率为:2/4=0.5
  3. 在在 2 个样本中,体型超重的有 4 共 1 个样本,则其概率为:½ = 0.5
  4. 则 P(程序员, 超重|喜欢) = 0.5 * 0.5 = 0.25

 贝叶斯公式

  1. P(C) 表示 C 出现的概率
  2. P(W|C) 表示 C 条件 W 出现的概率
  3. P(W) 表示 W 出现的概率

朴素贝叶斯算法假设所有特征的出现相互独立互不影响,每一特征同等重要,又因为其简单,而且具有很好的可解释性一般。相对于其他精心设计的更复杂的分类算法,朴素贝叶斯分类算法是学习效率和分类效果较好的分类器之一。朴素贝叶斯算法一般应用在文本分类,垃圾邮件的分类,信用评估,钓鱼网站检测等。

 莺尾花数据集

代码语言:javascript
复制
import warnings
warnings.filterwarnings('ignore')
import numpy as np
# 加载莺尾花数据集
from sklearn import datasets
# 导入高斯朴素贝叶斯分类器
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
代码语言:javascript
复制
X, y = datasets.load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
代码语言:javascript
复制
# 使用高斯朴素贝叶斯进行计算
clf = GaussianNB(var_smoothing=1e-8)
clf.fit(X_train, y_train)
代码语言:javascript
复制
# 评估
y_pred = clf.predict(X_test)
acc = np.sum(y_test == y_pred) / X_test.shape[0]
print("Test Acc : %.3f" % acc)

# 预测
y_proba = clf.predict_proba(X_test[:1])
print(clf.predict(X_test[:1]))
print("预计的概率值:", y_proba)
代码语言:javascript
复制
预计的概率值: [[1.63542393e-232 2.18880483e-006 9.99997811e-001]]

 朴素贝叶斯算法

朴素贝叶斯法 = 贝叶斯定理 + 特征条件独立。

index

X1:天气的好坏

X2:是否周末

Y是否出门

1

出门

2

出门

3

不出门

4

出门

5

不好

出门

6

不好

不出门

a. 当出门的条件下,X_1是天气不好的概率:

p(X1=不好|Y=出门)=p(X1=不好,Y=出门)/p(Y=出门)=1/4

b. 出门的概率

p(Y=出门)=4/6 

c. X_1天气不好的概率

p(X1=不好)=2/6

d. 在X_1天气不好的情况下,出门的概率:

p(Y=出门|X1=不好)=1/2

为了简化联合概率的计算,朴素贝叶斯在贝叶斯基础上增加特征条件独立假设,特征之间是互为独立的。

联合概率的计算即可简化为:

  1. P(程序员,超重|喜欢) = P(程序员|喜欢) * P(超重|喜欢)
  2. P(程序员,超重) = P(程序员) * P(超重)

拉普拉斯平滑系数 

 由于训练样本的不足,导致概率计算时出现 0 的情况。为了解决这个问题,我们引入了拉普拉斯平滑系数。

  1. α 是拉普拉斯平滑系数,一般指定为 1
  2. Ni 是 F1 中符合条件 C 的样本数量
  3. N 是在条件 C 下所有样本的总数
  4. m 表示所有独立样本的总数

朴素贝叶斯的优缺点 

朴素贝叶斯算法主要基于经典的贝叶斯公式进行推倒,具有很好的数学原理。而且在数据量很小的时候表现良好,数据量很大的时候也可以进行增量计算。朴素贝叶斯模型与其他分类方法相比具有最小的理论误差率。。解决特征之间的相关性,我们还可以使用数据降维(PCA)的方法,去除特征相关性,再进行朴素贝叶斯计算。 

朴素贝叶斯分类器基于特征条件独立假设,即假设各个特征之间相互独立。在垃圾邮件分类中,这个假设通常能够成立,因为邮件中的单词出现与否可以被认为是相互独立的事件。朴素贝叶斯分类器可以计算出给定特征下某个类别的概率,这对于垃圾邮件分类来说非常有用。通过比较垃圾邮件和正常邮件的概率,可以对邮件进行分类。垃圾邮件分类涉及到大量的特征(例如单词),朴素贝叶斯能够很好地处理这种高维数据。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-03-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 朴素贝叶斯的介绍
  •  贝叶斯公式
  •  朴素贝叶斯算法
  • 拉普拉斯平滑系数 
  • 朴素贝叶斯的优缺点 
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档