在当今技术日益进步的时代,人工智能(AI)在多媒体处理中的应用变得越发广泛和精深。特别地,从各种背景噪声环境中精确地提取人声说话片段,这项技术已成为智能音频分析领域的研究热点。本文将深入探讨利用先进的Silero Voice Activity Detector (VAD)模型,如何实现从音频文件中获得清晰人声片段的目标,进而揭示这一技术在实际应用中的巨大潜力。
Silero VAD是一个预训练的企业级语音活动检测器,以其卓越的精确度、高速处理能力、轻量级架构以及高度的通用性和便携性而著称。这款基于深度学习的模型在识别不同背景噪声、多样的语言和不同质量级别的音频方面展现出了令人印象深刻的性能。
主要特点
首先,确保您的工作环境已经安装了必要的Python库,包括pydub、numpy和torch。这些库分别用于音频文件的加载和处理、科学计算以及执行深度学习模型。
在本示例中,我们使用silero-vad模型(声学事件检测的一种),该模型能够识别音频流中的语音活动。silero-vad是基于深度学习的模型,它可以高效地在各种背景噪声中识别人声。
音频预处理:首先将原音频文件转换为单声道WAV格式,并统一采样率至16000Hz,这一步是为了确保模型能够正确处理音频数据。
import os
import sys # 导入 sys 模块
import contextlib
import wave
import pydub
import numpy as np
import torch
torch.set_num_threads(1)
# 参数设置
sample_rate = 16000
min_buffer_duration = 0.6 # 这是音频缓冲区的最小长度,单位是秒
# 初始化 VAD
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
model='silero_vad',
source='github')
def int2float(sound):
abs_max = np.abs(sound).max()
sound = sound.astype('float32')
if abs_max > 0:
sound *= 1/32768
sound = sound.squeeze() # depends on the use case
return sound
def audio_to_wave(audio_path, target_path="temp.wav"):
audio = pydub.AudioSegment.from_file(audio_path)
audio = audio.set_channels(1).set_frame_rate(sample_rate)
audio.export(target_path, format="wav")
def frame_generator(frame_duration_s, audio, sample_rate):
n = int(sample_rate * frame_duration_s * 2) # 一帧的存储字节长度
offset = 0 # 字节偏移量
timestamp = 0.0 # 时间偏移量
duration = frame_duration_s * 1000.0 # 单位毫秒
while offset + n < len(audio):
yield Frame(audio[offset:offset + n], timestamp, duration)
timestamp += duration
offset += n
class Frame:
def __init__(self, bytes, timestamp, duration):
self.bytes = bytes # 此帧字节大小
self.timestamp = timestamp # 此帧开始时间,单位毫秒
self.duration = duration # 此帧的持续时间,单位毫秒
def vad_collector(frames, sample_rate):
voiced_frames = []
for frame in frames:
audio_frame_np = np.frombuffer(frame.bytes, dtype=np.int16)
audio_float32 = int2float(audio_frame_np)
with torch.no_grad():
new_confidence = model(torch.from_numpy(
audio_float32), sample_rate).item()
if new_confidence > 0.5:
is_speech = True
else:
is_speech = False
if is_speech:
voiced_frames.append(frame)
elif voiced_frames:
start, end = voiced_frames[0].timestamp, voiced_frames[-1].timestamp + \
voiced_frames[-1].duration
voiced_frames = []
yield start, end
if voiced_frames:
start, end = voiced_frames[0].timestamp, voiced_frames[-1].timestamp + \
voiced_frames[-1].duration
yield start, end
def merge_segments(segments, merge_distance=3000):
merged_segments = []
for start, end in segments:
if merged_segments and start - merged_segments[-1][1] <= merge_distance:
merged_segments[-1] = (merged_segments[-1][0], end)
else:
merged_segments.append((start, end))
return merged_segments
def format_time(milliseconds):
seconds, milliseconds = divmod(int(milliseconds), 1000)
minutes, seconds = divmod(seconds, 60)
return f"{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
def read_wave(path):
with contextlib.closing(wave.open(path, 'rb')) as wf:
sample_rate = wf.getframerate()
pcm_data = wf.readframes(wf.getnframes())
return pcm_data, sample_rate
def write_wave(path, audio: np.ndarray, sample_rate):
audio = audio.astype(np.int16) # Converting to int16 type for WAV format
with contextlib.closing(wave.open(path, 'wb')) as wf:
wf.setnchannels(1) # Mono channel
wf.setsampwidth(2) # 16 bits per sample
wf.setframerate(sample_rate)
wf.writeframes(audio.tobytes())
def detect_speech_segments(audio_path, output_folder="output"):
audio_to_wave(audio_path)
pcm_data, sample_rate = read_wave("temp.wav")
audio_np = np.frombuffer(pcm_data, dtype=np.int16) # 将PCM数据转换为numpy数组
frames = frame_generator(min_buffer_duration, pcm_data, sample_rate)
segments = list(vad_collector(list(frames), sample_rate))
merged_segments = merge_segments(segments)
os.makedirs(output_folder, exist_ok=True) # 确保输出文件夹存在
for index, (start, end) in enumerate(merged_segments):
start_sample = int(start * sample_rate / 1000)
end_sample = int(end * sample_rate / 1000)
segment_audio = audio_np[start_sample:end_sample]
segment_path = os.path.join(
output_folder, f"segment_{index+1}_{format_time(start)}-{format_time(end)}.wav")
write_wave(segment_path, segment_audio, sample_rate)
print(f"Speech segment saved: {segment_path}")
# 从命令行读取参数
if __name__ == "__main__":
if len(sys.argv) != 3:
print("Usage: python3 detect_talk.py <audio_file.wav> <output_folder>")
else:
audio_file = sys.argv[1]
output_folder = sys.argv[2]
detect_speech_segments(audio_file, output_folder)
以上代码,在当前目录执行detect_voice.py,将wav文件audio_file.wav抽取出说话的语音片段,存储在当前目录下output_folder目录中:
python3 detect_voice.py <audio_file.wav> <output_folder>
Silero VAD以其卓越的检测性能、快速的处理速度、轻量化结构和广泛的适用性,在音频处理领域树立了新的标杆。通过本文的讨论与案例展示,我们不仅理解了如何有效地从复杂音频中提取人声说话片段的技术细节,而且可见利用这一技术在多样化应用场景中的巨大潜力。未来,随着技术进步,Silero VAD以及相关的音频处理技术将进一步推动智能语音分析领域的革新。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。