本文记录在 GNU Radio+USRP 实现 OFDM 收发时,在接收端 QPSK 星座图映射无“抖动”问题的解决方法,
我遇到的问题是,现在搭建的 OFDM 模型在接收端做信道均衡时,接收端的 QPSK 星座图映射在有噪声的情形下并没有出现 “抖动” 现象。如下图所示,可以看到 OFDM 头和负载的 BSPK 和 QPSK 都是比较规则的。
经过初步的分析,问题应当是出在了接收端的 “信道均衡模块” (OFDM Frame Equalizer Module), 这个模块不仅仅进行了信道估计和信道均衡,同时进行了最小距离分析并把含有噪声的点强行 “拉回” 星座图上的标准映射点。这个与我们一般意义下理解的“信道均衡” 是不同的,一般不会“拉回去” 。所以,现在的任务就是找出与 equalizer 相关的 .h 和 .cc 文件,阅读源代码,并对源代码进行修改。
在 gnuradio/gr-digital/include/gnuradio/digital/ 文件夹下找到了所有与 equalizer 有关的 .h 文件 在 gnuradio/gr-digital/lib/ 文件夹下找到了所有上述.h 文件对应的.cc 源文件
最后直接定位到 ofdm_equalizer_simpledfe.cc
其源文件完整源码如下:
/* -*- c++ -*- */
/* Copyright 2012 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gnuradio/digital/ofdm_equalizer_simpledfe.h>
namespace gr {
namespace digital {
ofdm_equalizer_simpledfe::sptr
ofdm_equalizer_simpledfe::make(int fft_len,
const gr::digital::constellation_sptr& constellation,
const std::vector<std::vector<int>>& occupied_carriers,
const std::vector<std::vector<int>>& pilot_carriers,
const std::vector<std::vector<gr_complex>>& pilot_symbols,
int symbols_skipped,
float alpha,
bool input_is_shifted)
{
return ofdm_equalizer_simpledfe::sptr(new ofdm_equalizer_simpledfe(fft_len,
constellation,
occupied_carriers,
pilot_carriers,
pilot_symbols,
symbols_skipped,
alpha,
input_is_shifted));
}
ofdm_equalizer_simpledfe::ofdm_equalizer_simpledfe(
int fft_len,
const gr::digital::constellation_sptr& constellation,
const std::vector<std::vector<int>>& occupied_carriers,
const std::vector<std::vector<int>>& pilot_carriers,
const std::vector<std::vector<gr_complex>>& pilot_symbols,
int symbols_skipped,
float alpha,
bool input_is_shifted)
: ofdm_equalizer_1d_pilots(fft_len,
occupied_carriers,
pilot_carriers,
pilot_symbols,
symbols_skipped,
input_is_shifted),
d_constellation(constellation),
d_alpha(alpha)
{
}
ofdm_equalizer_simpledfe::~ofdm_equalizer_simpledfe() {}
void ofdm_equalizer_simpledfe::equalize(gr_complex* frame,
int n_sym,
const std::vector<gr_complex>& initial_taps,
const std::vector<tag_t>& tags)
{
if (!initial_taps.empty()) {
d_channel_state = initial_taps;
}
gr_complex sym_eq, sym_est;
for (int i = 0; i < n_sym; i++) {
for (int k = 0; k < d_fft_len; k++) {
if (!d_occupied_carriers[k]) {
continue;
}
if (!d_pilot_carriers.empty() && d_pilot_carriers[d_pilot_carr_set][k]) {
d_channel_state[k] = d_alpha * d_channel_state[k] +
(1 - d_alpha) * frame[i * d_fft_len + k] /
d_pilot_symbols[d_pilot_carr_set][k];
frame[i * d_fft_len + k] = d_pilot_symbols[d_pilot_carr_set][k];
} else {
sym_eq = frame[i * d_fft_len + k] / d_channel_state[k];
// The `map_to_points` function will treat `sym_est` as an array
// pointer. This call is "safe" because `map_to_points` is limited
// by the dimensionality of the constellation. This class calls the
// `constellation` class default constructor, which initializes the
// dimensionality value to `1`. Thus, Only the single `gr_complex`
// value will be dereferenced.
d_constellation->map_to_points(d_constellation->decision_maker(&sym_eq),
&sym_est);
d_channel_state[k] = d_alpha * d_channel_state[k] +
(1 - d_alpha) * frame[i * d_fft_len + k] / sym_est;
frame[i * d_fft_len + k] = sym_est;
}
}
if (!d_pilot_carriers.empty()) {
d_pilot_carr_set = (d_pilot_carr_set + 1) % d_pilot_carriers.size();
}
}
}
} /* namespace digital */
} /* namespace gr */
我们需要对其进行修改,有关其修改内容及解决办法已放到文末,有需求的通信爱好者可以自取。
首先进入安装的时候的 gnuradio 文件夹下,之后进入 build 文件夹下,在这个文件夹下开启 terminal 之后在 terminal 中输入下面命令:
cd workarea/gnuradio/build
cmake -DCMAKE_BUILD_TYPE=Release -DPYTHON_EXECUTABLE=/usr/bin/python3 ../
make -j4
sudo make install
sudo ldconfig
打开 OFDM 工程,运行可以看到下面界面:
1、发端效果图:
2、收端效果图
可以看到目前属于正常的状态