前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Scaling Laws又失灵了?谷歌新研究:扩散模型不是越大越好

Scaling Laws又失灵了?谷歌新研究:扩散模型不是越大越好

作者头像
大数据文摘
发布于 2024-04-15 04:43:22
发布于 2024-04-15 04:43:22
7100
举报
文章被收录于专栏:大数据文摘大数据文摘

近年来,模型规模呈现出愈来愈大的趋势,越来越多的人相信“力大砖飞”。

OpenAI 虽然没有公布Sora的训练细节,但在Sora的技术报告中提到了:

Our largest model, Sora, is capable of generating a minute of high fidelity video. Our results suggest that scaling video generation models is a promising path towards building general purpose simulators of the physical world. 我们最大的模型 Sora 能够生成一分钟的高保真视频。我们的结果表明,扩展视频生成模型是构建物理世界通用模拟器的一条有前途的途径。

OpenAI是scaling laws的坚定拥护者。可是模型训练是否真的大力出奇迹呢?

谷歌最新的研究结论:

不是!

谷歌研究院和约翰霍普金斯大学在最新的论文中指出:对于潜在扩散模型,模型不一定是越大越好。

论文链接: https://arxiv.org/abs/2404.01367

Scaling laws 争议一直有

关于Scaling laws(中文译文:缩放定律),来自Open AI 2020年的论文《Scaling Laws for Neural Language Models》,简单说就是:模型的效果和规模大小、数据集大小、计算量大小强相关,而与模型的具体结构(层数/深度/宽度)弱相关。

论文链接: https://arxiv.org/pdf/2001.08361.pdf

Scaling Laws不仅适用于语言模型,还适用于其他模态以及跨模态的场景。缩放定律提出的意义是重大的,根据它研究人员和开发者可以更有效地设计模型架构,选择合适的模型大小和数据集规模,以在有限的计算资源下实现最佳性能。

关于缩放定律的研究,先前的研究主要集中在大语言模型(LLM)上,关于它的争议一直存在:

OpenAI认为[1],每增加10倍的计算量,应该让数据集大小增加为约1.8倍,模型参数量增加为约5.5倍。换句话说,模型参数量更加的重要。

DeepMind认为[2],每增加10倍的计算量,应该让数据集大小增加为约3.16倍,模型参数量也增加为约3.16倍。换句话说,数据集大小和模型参数量一样重要。

先前,关于LLM的缩放定律已经被充分研究,而Google的最新研究则关注图像生成模型:潜在扩散模型(Latent Diffusion Models, LDMs),从DALL·E到最近大火的Sora,我们都能看到它的影子。但是谷歌的研究结论是:

对于LDMs,在计算资源较少时,如果增加10倍的计算量,应该让数据集大小增加为10倍,而不增加模型参数量。换句话说,数据集大小更加的重要。

Scaling Laws 又失灵了吗?

小模型的生成质量更好

作者设计了11个文本生成图像的LDM,其参数量从3900万到50亿不等,如下图所示,第一行是模型参数量,第二行是其中Unet模型的第一层宽度,第三和四行分别是模型的GFLOPS(运行一次前向传播和反向传播所需的计算量)和花费(相对于原始866M模型的花费,即假设866M模型的花费为1.00)

众所周知,模型的总计算量等于训练步骤和GFLOPS的乘积,所以在总计算量恒定的约束下,越大的模型能得到的训练步骤就越少,所以是模型大比较重要还是训练步骤多比较重要呢?

训练步骤多比较重要!在计算资源有限时,较小的模型(训练步骤多)可以胜过较大的模型(训练步骤少);模型大小以及训练步骤的选择要和计算资源适配。下面给出了一个定性的示例,可以看出小模型的效果更好一些。

但当训练步骤恒定时,依然是模型越大越好,下面给出了一个例子:训练步骤恒为500k,不同体积模型的生成效果。

但大模型更擅长图像细节

使用前面的text2image任务作为预训练任务,分别在超分辨率任务和DreamBooth任务上做微调,发现在超分辨率任务上,相同的计算量,模型越大,FID越低(生成质量越好),而超分辨率任务最考验模型的细节生成能力。

下面是一个定性的例子

在下面DreamBooth上的表现证明了同样的结论,即大模型更擅长图像细节。

不同体积模型的CFG相关性竟然基本一致

先简单介绍一下CFG:

CFG速率(Classifier-Free Guidance Rate)是一种在扩散模型中使用的技术,在文本到图像的生成任务中,它通过调整模型在随机生成和文本条件生成之间的平衡来实现这一目标。

扩散模型在生成过程中,通常会从一个纯噪声状态开始,逐步降噪直至产生清晰的图像。在这一过程中,CFG技术引入了一个额外的“引导”步骤,通过该步骤可以更加强烈地推动生成的图像朝着给定文本描述相符合的方向发展,CFG速率定义了这种引导的强度。

具体来说,CFG修改了模型在生成过程中使用的文本信息的权重。CFG速率为0意味着完全不使用文本信息,而较高的CFG速率意味着文本信息对生成过程的影响更大。通过调整CFG速率,可以在图文相关性与图像质量之间找到最佳平衡。

下图是不同模型和采样步骤下,最优的CFG热力图:

你会发现,同一行的颜色基本是一致的,这说明不同体积的模型受CFG的影响是基本一致的,下面给出了一个定性的示例,从左到右的CFG逐渐提高。

虽然下面一行的整体质量比上面好,但是两行从左到右的整体变化趋势基本一样。甚至作者在蒸馏模型中进行同样的实验,依然能得到同样的结论。

效率与品质的探索

这项研究无疑将对开发更高效的图像生成AI系统产生深远影响,因为它提出了实现模型效率与质量之间最佳平衡的指导性建议。通过深入探索潜在扩散模型(LDM)的扩展特性及模型大小与性能的关系,研究人员得以精准调整,以达到效率和质量的和谐统一。

这些成果也与AI领域的最新动态相契合,比如LLaMa、Falcon等小型语言模型在多项任务中超越大型对手。这股推动开源、更小巧、更高效模型的发展势头,旨在推动AI技术的民主化,使开发者得以在不依赖庞大计算资源的情况下,于边缘设备上构建个性化的AI系统。

参考资料

[1]Kaplan J, McCandlish S, Henighan T, et al. Scaling laws for neural language models[J] arXiv preprint arXiv:2001.08361, 2020. [2]Hoffmann J, Borgeaud S, Mensch A, et al. Training compute-optimal large language models [J] arXiv preprint arXiv:2203.15556, 2022.

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-04-08,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据文摘 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
ICML 2023 Workshop | Siamese SIREN:隐式神经表征的音频压缩
隐式神经表征 (INRs) 已经成为一种很有前景的表示各种数据模式的方法,包括3D形状、图像和音频。虽然最近的研究已经证明了 INRs 在图像和 3D 形状压缩方面的成功应用,但它们在音频压缩方面的潜力仍未得到充分开发。基于此,本文提出了一项关于使用 INRs 进行音频压缩的初步研究。
用户1324186
2023/09/27
5880
ICML 2023 Workshop | Siamese SIREN:隐式神经表征的音频压缩
Relu激活函数Out了?正弦周期激活函数在隐式神经表示中大显神威!
下图就是一些我们经常使用的激活函数,从这些激活函数的图像可以看出它们有的是局部线性的有的是非线性的,有的是一个函数表达式下来的,有的是分段的。但其表达式好像都不是很常见,给人一种应凑的感觉有没有?
AI科技评论
2020/07/15
2.4K0
Relu激活函数Out了?正弦周期激活函数在隐式神经表示中大显神威!
学界 | 深度神经网络为什么不易过拟合?傅里叶分析发现固有频谱偏差
众所周知,过参数化的深度神经网络(DNN)是一类表达能力极强的函数,它们甚至可以以 100% 的训练准确率记住随机数据。这种现象就提出了一个问题:为什么它们不会轻易地过度拟合真实数据?为了回答这个问题,我们使用傅立叶分析研究了深度神经网络。我们证明了具有有限权重(或者经过有限步训练)的深度神经网络天然地偏向于在输入空间上表示光滑的函数。具体而言,深度 ReLU 网络函数的一个特定频率分量(k)的大小至少以 O(k^(-2))的速率衰减,网络的宽度和深度分别以多项式和指数级别帮助网络对更高的频率建模。这就说明了为什么深度神经网络不能完全记住 delta 型的峰函数。我们的研究还表明深度神经网络可以利用低维数据流形的几何结构来用简单的函数逼近输入空间中存在于简单函数流形上的复杂函数。结果表明,被网络分类为属于某个类的所有样本(包括对抗性样本)都可以通过一条路径连接起来,这样沿着该路径上的网络预测结果就不会改变。最后,我们发现对应于高频分量的深度神经网络(DNN)参数在参数空间中所占的体积较小。
机器之心
2018/07/26
9870
学界 | 深度神经网络为什么不易过拟合?傅里叶分析发现固有频谱偏差
如何从频域的角度解释CNN(卷积神经网络)?
时域卷积=频域乘积,卷积神经网络大部分的计算也在卷积部分,如何从频域的角度思考卷积神经网络,如何从频域的角度解释ResNet。
abs_zero
2020/11/11
1.3K0
如何从频域的角度解释CNN(卷积神经网络)?
性能优于ReLU,斯坦福用周期激活函数构建隐式神经表示,Hinton点赞
这个非线性激活函数效果比 ReLU 还好?近日,斯坦福大学的一项研究《Implicit Neural Representations with Periodic Activation Functions》进入了我们的视野。这项研究提出利用周期性激活函数处理隐式神经表示,由此构建的正弦表示网络(sinusoidal representation network,SIREN)非常适合表示复杂的自然信号及其导数。
机器之心
2020/06/29
1.5K0
性能优于ReLU,斯坦福用周期激活函数构建隐式神经表示,Hinton点赞
ICML 2019 | SGC:简单图卷积网络
题目:Simplifying Graph Convolutional Networks
Cyril-KI
2022/11/17
8870
ICML 2019 | SGC:简单图卷积网络
SIREN周期激活函数
CNN强大的学习能力使其能拟合任意函数,然而这种网络架构无法对信号进行细致的建模,很难去表示信号在时域,空域的衍生信息。我们提出以「周期激活函数来表示隐式神经网络」,并「证明这些网络非常适合复杂的自然信号及其导数」。而在实验中也表明SIREN相较于其他激活函数对于音视频任务有更好的效果。
BBuf
2020/07/09
1.9K0
SIREN周期激活函数
另一个角度看神经网络回归-频域分析
神经网络模型被广泛应用在回归问题中。神经网络模型的回归精度与训练数据的分布有关。本文从训练数据的频域的角度来对该问题进行分析
绿盟科技研究通讯
2019/12/11
2K0
另一个角度看神经网络回归-频域分析
WACV 2023 | ImPosing:用于视觉定位的隐式姿态编码
标题:ImPosing:Implicit Pose Encoding for Efficient Visual Localization
3D视觉工坊
2023/04/30
3070
WACV 2023 | ImPosing:用于视觉定位的隐式姿态编码
上海交大 | 神经网络的两个简单偏好(频率原则、参数凝聚)
我是 2017 年 11 月开始接触深度学习,至今刚好五年。2019 年 10 月入职上海交大,至今三年,刚好第一阶段考核。2022 年 8 月 19 号,我在第一届中国机器学习与科学应用大会做大会报告,总结这五年的研究以及展望未来的方向。本文是该报告里关于理论方面的研究总结(做了一点扩展)。报告视频链接可以见:
ShuYini
2022/12/06
2.5K0
上海交大 | 神经网络的两个简单偏好(频率原则、参数凝聚)
深度神经网络中的数学,对你来说会不会太难?
选自MIT 机器之心编译 参与:Jane W 这是一篇讲解深度学习数学的系列文章,但并非是基础数学,还涉及到了拓扑与测度论等内容。本文为该系列文章的第一部分,机器之心会持续把后续内容全部放出。更规范
机器之心
2018/05/09
7050
深度神经网络中的数学,对你来说会不会太难?
2025最新卷积神经网络(CNN)详细介绍及其原理详解
本文详细介绍了卷积神经网络(CNN)的基础概念和工作原理,包括输入层、卷积层、池化层、全连接层和输出层的作用。通过举例和图解,阐述了CNN如何处理图像,提取特征,以及如何进行手写数字识别。此外,讨论了池化层的平移不变性和防止过拟合的重要性。 本文是关于卷积神经网络(CNN)技术教程,整体内容从基础概念到实际示例,逐层剖析 CNN 的各个组成部分与作用,并通过手写数字识别案例帮助大家更直观地理解其工作原理。
猫头虎
2025/06/08
1.4K0
2025最新卷积神经网络(CNN)详细介绍及其原理详解
NeurIPS 2023 | 神经网络图像压缩:泛化、鲁棒性和谱偏
目前,神经图像压缩(NIC)在分布内(in-distribution, IND)数据的 RD 性能和运行开销表现出了卓越的性能。然而,研究神经图像压缩方法在分布外(out-of-distribution, OOD)数据的鲁棒性和泛化性能方面的工作有限。本文的工作就是围绕以下关键问题展开的:
用户1324186
2024/01/04
5200
NeurIPS 2023 | 神经网络图像压缩:泛化、鲁棒性和谱偏
Tacotron2论文阅读
这篇论文描述了Tacotron 2, 一个直接从文本合成语音的神经网络架构。系统由两部分构成,一个循环seq2seq结构的特征预测网络,把字符向量映射为梅尔声谱图,后面再接一个WaveNet模型的修订版,把梅尔声谱图合成为时域波形。我们的模型得到了4.53的平均意见得分(MOS),专业录制语音的MOS得分是4.58。为了验证模型设计,我们对系统的关键组件作了剥离实验研究,并且评估了使用梅尔频谱替代语言学、音长和F0特征作为WaveNet输入带来的不同影响。我们进一步展示了使用紧凑的声学中间表征可以显著地简化WaveNet架构
mathor
2020/08/13
1.6K0
90后华裔教授一年连发三篇Nature子刊!首个量子神经网络QuantumFlow开源
---- 新智元报道   作者:姜炜文 编辑:好困 【新智元导读】近日,华裔教授姜炜文再获量子计算革命性突破,在QuantumWeek上开源了首个量子神经网络设计栈,加速了神经网络在量子计算机上的发展。 神经网络是当下计算应用中发展最快,使用最广的机器学习算法。然而,随着应用不断复杂化导致网络结构不断扩大,存储性能瓶颈已逐渐凸显。 在传统计算平台上,N个数字比特只能表示1个N位数据,然而在量子计算中,M个量子比特却同时能表示2^M个数据,并能同时操作这些数据。 量子计算机如此强大的存储与计算能力,使其
新智元
2023/05/22
3360
90后华裔教授一年连发三篇Nature子刊!首个量子神经网络QuantumFlow开源
一位上海交大教授的深度学习五年研究总结
我是2017年11月开始接触深度学习,至今刚好五年。2019年10月入职上海交大,至今三年,刚好第一阶段考核。2022年8月19号,我在第一届中国机器学习与科学应用大会做大会报告,总结这五年的研究以及展望未来的方向。本文是该报告里关于理论方面的研究总结(做了一点扩展)。报告视频链接可以见:https://www.bilibili.com/video/BV1eB4y1z7tL/
黄博的机器学习圈子
2022/11/07
9000
一位上海交大教授的深度学习五年研究总结
既是自编码器,也是RNN,DeepMind科学家八个视角剖析扩散模型
如果你尝试过目前最火的 AI 绘画工具之一 Stable Diffusion,那你就已经体验过扩散模型(diffusion model)那强大的生成能力。但如果你想更进一步,了解其工作方式,你会发现扩散模型的形式其实有很多种。
机器之心
2023/09/08
5710
既是自编码器,也是RNN,DeepMind科学家八个视角剖析扩散模型
图神经网络 GNN GAT & GCN(一)
知乎: https://www.zhihu.com/people/gong-jun-min-74
zenRRan
2020/04/21
3.6K0
图神经网络 GNN GAT & GCN(一)
最基本的25道深度学习面试问题和答案
近年来,对深度学习的需求不断增长,其应用程序被应用于各个商业部门。各公司现在都在寻找能够利用深度学习和机器学习技术的专业人士。在本文中,将整理深度学习面试中最常被问到的25个问题和答案。如果你最近正在参加深度学习相关的面试工作,那么这些问题会对你有所帮助。
deephub
2022/11/11
9840
最基本的25道深度学习面试问题和答案
解读 | 如何从信号分析角度理解卷积神经网络的复杂机制?
机器之心原创 作者:Qintong Wu 参与:Jane W 随着复杂和高效的神经网络架构的出现,卷积神经网络(CNN)的性能已经优于传统的数字图像处理方法,如 SIFT 和 SURF。在计算机视觉领域,学者们开始将研究重点转移到 CNN,并相信 CNN 是这一领域的未来趋势。但是,人们对成效卓著的 CNN 背后的机理却缺乏了解。研究 CNN 的运行机理是当今一个热门话题。基本上,有三种主流观点:1>优化、2>近似、3>信号。前两种观点主要集中在纯数学分析,它们试图分析神经网络的统计属性和收敛性,而第三种观
机器之心
2018/05/07
8570
解读 | 如何从信号分析角度理解卷积神经网络的复杂机制?
推荐阅读
相关推荐
ICML 2023 Workshop | Siamese SIREN:隐式神经表征的音频压缩
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档