前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >宏宏的学习笔记Day6 学习R包

宏宏的学习笔记Day6 学习R包

原创
作者头像
咕咚咕叽
发布2024-04-19 07:04:46
1420
发布2024-04-19 07:04:46
举报
文章被收录于专栏:生信新手保护小组学习

安装和加载R包

设置镜像、安装、加载(以dplyr包为例)

代码语言:R
复制
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 

install.packages("dplyr")
also installing the dependencies ‘cli’, ‘lifecycle’, ‘pillar’, ‘rlang’, ‘tibble’, ‘tidyselect’, ‘vctrs’


  There are binary versions available but the source
  versions are later:
           binary source needs_compilation
rlang       1.1.2  1.1.3              TRUE
tidyselect  1.2.0  1.2.1              TRUE

Do you want to install from sources the packages which need compilation? (Yes/no/cancel) Yes
trying URL 'https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/macosx/contrib/4.2/cli_3.6.2.tgz'
Content type 'application/octet-stream' length 1369741 bytes (1.3 MB)

downloaded 1.3 MB

trying URL 'https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/macosx/contrib/4.2/lifecycle_1.0.4.tgz'
Content type 'application/octet-stream' length 121623 bytes (118 KB)

downloaded 118 KB

trying URL 'https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/macosx/contrib/4.2/pillar_1.9.0.tgz'
Content type 'application/octet-stream' length 643056 bytes (627 KB)
downloaded 627 KB

trying URL 'https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/macosx/contrib/4.2/tibble_3.2.1.tgz'
Content type 'application/octet-stream' length 676165 bytes (660 KB)
downloaded 660 KB

trying URL 'https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/macosx/contrib/4.2/vctrs_0.6.5.tgz'
Content type 'application/octet-stream' length 1852246 bytes (1.8 MB)
downloaded 1.8 MB

trying URL 'https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/macosx/contrib/4.2/dplyr_1.1.4.tgz'
Content type 'application/octet-stream' length 1570597 bytes (1.5 MB)
downloaded 1.5 MB


The downloaded binary packages are in
	/var/folders/v_/r2n80_ls6yx_37pjtzps5yqh0000gn/T//RtmpsObKqI/downloaded_packages
installing the source packages ‘rlang’, ‘tidyselect’

trying URL 'https://mirrors.tuna.tsinghua.edu.cn/CRAN/src/contrib/rlang_1.1.3.tar.gz'
Content type 'application/octet-stream' length 763765 bytes (745 KB)
downloaded 745 KB

trying URL 'https://mirrors.tuna.tsinghua.edu.cn/CRAN/src/contrib/tidyselect_1.2.1.tar.gz'
Content type 'application/octet-stream' length 103591 bytes (101 KB)

downloaded 101 KB

* installing *source* package ‘rlang’ ...
** package ‘rlang’ successfully unpacked and MD5 sums checked
** using staged installation
** libs
clang -mmacosx-version-min=10.13 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I./rlang/  -I/usr/local/include   -fPIC  -Wall -g -O2  -c capture.c -o capture.o
clang -mmacosx-version-min=10.13 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I./rlang/  -I/usr/local/include   -fPIC  -Wall -g -O2  -c internal.c -o internal.o
clang -mmacosx-version-min=10.13 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I./rlang/  -I/usr/local/include   -fPIC  -Wall -g -O2  -c rlang.c -o rlang.o
clang -mmacosx-version-min=10.13 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I./rlang/  -I/usr/local/include   -fPIC  -Wall -g -O2  -c version.c -o version.o
clang -mmacosx-version-min=10.13 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -single_module -multiply_defined suppress -L/Library/Frameworks/R.framework/Resources/lib -L/usr/local/lib -o rlang.so capture.o internal.o rlang.o version.o -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation
installing to /Library/Frameworks/R.framework/Versions/4.2/Resources/library/00LOCK-rlang/00new/rlang/libs
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
*** copying figures
** building package indices
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (rlang)
* installing *source* package ‘tidyselect’ ...
** package ‘tidyselect’ successfully unpacked and MD5 sums checked
** using staged installation
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (tidyselect)

The downloaded source packages are in
	‘/private/var/folders/v_/r2n80_ls6yx_37pjtzps5yqh0000gn/T/RtmpsObKqI/downloaded_packages’
library(dplyr)

Attaching package: ‘dplyr’

The following objects are masked from ‘package:stats’:

    filter, lag

The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union

dplyr五个基础函数

1.mutate()新增列

mutate(test, new = Sepal.Length * Sepal.Width)

意为新增一列,test数据框中 Sepal.Length与Sepal.Width相乘的结果

代码语言:R
复制
mutate(test, new = Sepal.Length * Sepal.Width)
    Sepal.Length Sepal.Width Petal.Length Petal.Width
1            5.1         3.5          1.4         0.2
2            4.9         3.0          1.4         0.2
51           7.0         3.2          4.7         1.4
52           6.4         3.2          4.5         1.5
101          6.3         3.3          6.0         2.5
102          5.8         2.7          5.1         1.9
       Species   new
1       setosa 17.85
2       setosa 14.70
51  versicolor 22.40
52  versicolor 20.48
101  virginica 20.79
102  virginica 15.66

2.select()按列筛选

按列号筛选

select(test,1)

意为筛选出,test数据框中的第一列

代码语言:R
复制
> select(test,1)
    Sepal.Length
1            5.1
2            4.9
51           7.0
52           6.4
101          6.3

select(test,c(1,5))

意思为筛选出,test数据框中的第一和第五列

代码语言:R
复制
> select(test,c(1,5))
    Sepal.Length    Species
1            5.1     setosa
2            4.9     setosa
51           7.0 versicolor
52           6.4 versicolor
101          6.3  virginica

select(test,Sepal.Length)

意为筛选出,test数据框中列名为Sepal.Length的列

代码语言:R
复制
> select(test,Sepal.Length)
    Sepal.Length
1            5.1
2            4.9
51           7.0
52           6.4
101          6.3

按列名筛选

select(test, Petal.Length, Petal.Width)

意为筛选出,test数据框中列名为Sepal.Length和Petal.Width的列

代码语言:R
复制
> select(test, Petal.Length, Petal.Width)
    Petal.Length Petal.Width
1            1.4         0.2
2            1.4         0.2
51           4.7         1.4
52           4.5         1.5
101          6.0         2.5

vars <- c("Petal.Length", "Petal.Width")

select(test, one_of(vars))

将"Petal.Length", "Petal.Width"赋值给vas

意为筛选出test数据框,vas向量中包含名字的列

代码语言:R
复制
> vars <- c("Petal.Length", "Petal.Width")
> select(test, one_of(vars))
    Petal.Length Petal.Width
1            1.4         0.2
2            1.4         0.2
51           4.7         1.4
52           4.5         1.5
101          6.0         2.5

3.filter()按列筛选

filter(test, Species == "setosa")

意为筛选出test数据框中,Species列中setosa所在的行

代码语言:R
复制
filter(test, Species == "setosa")
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa

filter(test, Species == "setosa"&Sepal.Length > 5 )

意为筛选出test数据框中,Species列中setosa且Sepal.Length列值大于5的行

代码语言:R
复制
> filter(test, Species == "setosa"&Sepal.Length > 5 )
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa

filter(test, Species %in% c("setosa","versicolor"))

意为筛选出test数据框中,Species列中setosa和versicolor的行

代码语言:R
复制
> filter(test, Species %in% c("setosa","versicolor"))
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          5.1         3.5          1.4         0.2     setosa
2          4.9         3.0          1.4         0.2     setosa
3          7.0         3.2          4.7         1.4 versicolor
4          6.4         3.2          4.5         1.5 versicolor

4.arrange(),按某1列或某几列对整个表格进行排序

arrange()#默认从小到大排序

所以arrange(test, Sepal.Length),意为在test数据框中,将Sepal.Length一列从小到大排序

代码语言:R
复制
> arrange(test, Sepal.Length)
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          4.9         3.0          1.4         0.2     setosa
2          5.1         3.5          1.4         0.2     setosa
3          5.8         2.7          5.1         1.9  virginica
4          6.3         3.3          6.0         2.5  virginica
5          6.4         3.2          4.5         1.5 versicolor
6          7.0         3.2          4.7         1.4 versicolor

#用desc从大到小

所以arrange(test, desc(Sepal.Length)),意为在test数据框中,将Sepal.Length一列从大到小排序

代码语言:R
复制
> arrange(test, desc(Sepal.Length))
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          7.0         3.2          4.7         1.4 versicolor
2          6.4         3.2          4.5         1.5 versicolor
3          6.3         3.3          6.0         2.5  virginica
4          5.8         2.7          5.1         1.9  virginica
5          5.1         3.5          1.4         0.2     setosa
6          4.9         3.0          1.4         0.2     setosa

5.summarise()汇总

summarise(test, mean(Sepal.Length), sd(Sepal.Length))

#计算Sepal.Length的平均值和标准差

代码语言:R
复制
> summarise(test, mean(Sepal.Length), sd(Sepal.Length))
  mean(Sepal.Length) sd(Sepal.Length)
1           5.916667        0.8084965

summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))

意为先按照Species分组,计算每组Sepal.Length的平均值和标准差

代码语言:R
复制
> summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 × 3
  Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
  <fct>                     <dbl>              <dbl>
1 setosa                     5                 0.141
2 versicolor                 6.7               0.424
3 virginica                  6.05              0.354

dplyr两个使用技能

1.管道(cmd+shift+M)

%>%

上述summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))可使用%>% 拆解为

group_by(test,Species) %>%

summarise(mean(Sepal.Length), sd(Sepal.Length))

代码语言:R
复制
 group_by(test,Species) %>% 
+     summarise(mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 × 3
  Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
  <fct>                     <dbl>              <dbl>
1 setosa                     5                 0.141
2 versicolor                 6.7               0.424
3 virginica                  6.05              0.354

2.count统计某列的unique值

代码语言:R
复制
> count(test,Species)
     Species n
1     setosa 2
2 versicolor 2
3  virginica 2

dplyr处理关系数据

将两个表进行连接

代码语言:R
复制
> test1 <- data.frame(x = c('b','e','f','x'), 
+                     z = c("A","B","C",'D'))
> test2 <- data.frame(x = c('a','b','c','d','e','f'), 
+                     y = c(1,2,3,4,5,6))
> test1
  x z
1 b A
2 e B
3 f C
4 x D
> 
> test2
  x y
1 a 1
2 b 2
3 c 3
4 d 4
5 e 5
6 f 6

1.内连inner_join,取交集

代码语言:R
复制
> inner_join(test1, test2, by = "x")
  x z y
1 b A 2
2 e B 5
3 f C 6

左连left_join

left_join(test1, test2, by = 'x')

根据test1数据框中的x列,取test2中test1x列对应的y值

代码语言:R
复制
> left_join(test1, test2, by = 'x')
  x z  y
1 b A  2
2 e B  5
3 f C  6
4 x D NA

left_join(test2, test1, by = 'x')

根据test2数据框中的x列,取test1中test2x列对应z值

代码语言:R
复制
> left_join(test2, test1, by = 'x')
  x y    z
1 a 1 <NA>
2 b 2    A
3 c 3 <NA>
4 d 4 <NA>
5 e 5    B
6 f 6    C

3.全连full_join

full_join( test1, test2, by = 'x')

将test1级test2数据框按x列取并集,并补齐相应的y列z列

代码语言:R
复制
> full_join( test1, test2, by = 'x')
  x    z  y
1 b    A  2
2 e    B  5
3 f    C  6
4 x    D NA
5 a <NA>  1
6 c <NA>  3
7 d <NA>  4

4.半连接:返回能够与y表匹配的x表所有记录semi_join

代码语言:R
复制
> semi_join(x = test1, y = test2, by = 'x')
  x z
1 b A
2 e B
3 f C

5.反连接:返回无法与y表匹配的x表的所记录anti_join

代码语言:R
复制
> anti_join(x = test2, y = test1, by = 'x')
  x y
1 a 1
2 c 3
3 d 4

6.简单合并

代码语言:R
复制
> test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
> test2 <- data.frame(x = c(5,6), y = c(50,60))
> test3 <- data.frame(z = c(100,200,300,400))

> test1
  x  y
1 1 10
2 2 20
3 3 30
4 4 40
> test2
  x  y
1 5 50
2 6 60
> test3
    z
1 100
2 200
3 300
4 400

bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数

代码语言:R
复制
> bind_rows(test1, test2)
  x  y
1 1 10
2 2 20
3 3 30
4 4 40
5 5 50
6 6 60
代码语言:R
复制
> bind_cols(test1, test3)
  x  y   z
1 1 10 100
2 2 20 200
3 3 30 300
4 4 40 400

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 安装和加载R包
    • 设置镜像、安装、加载(以dplyr包为例)
    • dplyr五个基础函数
      • 1.mutate()新增列
        • 2.select()按列筛选
          • 按列号筛选
          • 按列名筛选
        • 3.filter()按列筛选
          • 4.arrange(),按某1列或某几列对整个表格进行排序
            • 5.summarise()汇总
            • dplyr两个使用技能
              • 1.管道(cmd+shift+M)
                • 2.count统计某列的unique值
                • dplyr处理关系数据
                  • 1.内连inner_join,取交集
                    • 左连left_join
                      • 3.全连full_join
                        • 4.半连接:返回能够与y表匹配的x表所有记录semi_join
                          • 5.反连接:返回无法与y表匹配的x表的所记录anti_join
                            • 6.简单合并
                            领券
                            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档