import scanpy as sc
import pandas as pd
from anndata import AnnData
from pathlib import Path
import json
from matplotlib.image import imread
from step import scModel, stModel
from step.utils.misc import read_visium_hd
sc.set_figure_params(dpi=150, figsize=(6, 4.5))
adata = read_visium_hd("./data/visium-hd/human-coloretal-cancer/square_016um/")
stepc = scModel(
adata=adata,
n_top_genes=2000,
)
stepc.run(epochs=400, batch_size=2048, beta=1e-3)
adata = stepc.adata
sc.pp.neighbors(adata, use_rep='X_rep', n_neighbors=60)
sc.tl.umap(adata)
sc.tl.leiden(adata)
sc.pl.umap(adata, color='leiden')
sc.pl.spatial(adata, color='leiden')
stepc.save("./results/visium-hd/hcc-16um/")
adata.write_h5ad("./results/visium-hd/hcc_16um.h5ad")
adata = sc.read_h5ad("./results/visium-hd/hcc_16um.h5ad")
# sc.set_figure_params(dpi=300, dpi_save=300)
# sc.settings.figdir = './results/visium-hd/hcc-16um/'
sc.pl.spatial(adata, color='leiden', frameon=False, groups=['7', '11', '14', '2', '9', '10'], na_in_legend=False)
sc.settings.figdir = "./results/visium-hd/hcc-16um/"
sc.set_figure_params(dpi_save=300)
sc.tl.rank_genes_groups(adata, groupby='leiden', dendrogram=False, use_raw=True)
sc.tl.dendrogram(adata, use_raw=True, groupby='leiden')
WARNING: You’re trying to run this on 2000 dimensions of `.X`, if you really want this, set `use_rep='X'`.
Falling back to preprocessing with `sc.pp.pca` and default params.
sc.pl.rank_genes_groups_matrixplot(adata,
groupby='leiden',
values_to_plot='logfoldchanges',
cmap='RdBu_r',
vmin=-4, vmax=4,
save='16um_leiden.svg')
adata = read_visium_hd("./data/visium-hd/human-coloretal-cancer/square_016um/")
stepc = stModel(
adata=adata,
n_top_genes=3000,
edge_clip=2,
n_glayers=3,
)
stepc.cluster(n_clusters=12)
stepc.spatial_plot(color='domain',)
stepc.save("./results/visium-hd/hccspatial_plotomain/")
stepc = stModel.load("./results/visium-hd/hccspatial_plotomain/",
filepath="./results/visium-hd/hcc_16um_domain.h5ad")
stepc.adata.obsm['X_smoothed'] = stepc.gembed()
stepc.cluster(n_clusters=8)
stepc.spatial_plot(color='domain',)
stepc.adata.write_h5ad("./results/visium-hd/hcc_16um_domain.h5ad")
adata = sc.read_h5ad("./results/visium-hd/hcc_16um_domain.h5ad")
sc.settings.figdir = "./results/visium-hd/hcc-16um/"
sc.set_figure_params(dpi_save=300, figsize=(12, 9))
sc.pl.spatial(adata, color='domain', frameon=False, show=False, save='_16um_domain.svg',)
adata_raw = adata.raw.to_adata()
sc.pp.log1p(adata_raw)
adata.raw = adata_raw
# adata = stepc.adata
sc.tl.rank_genes_groups(adata, groupby='domain', dendrogram=False, use_raw=True)
sc.tl.dendrogram(adata, use_raw=True, groupby='domain')
sc.pl.rank_genes_groups_matrixplot(adata,
groupby='domain',
values_to_plot='logfoldchanges',
cmap='RdBu_r',
vmin=-4, vmax=4,
save='16um_domain.svg')
import scanpy as sc
from step import scModel, stModel
from step.utils.misc import read_visium_hd
sc.set_figure_params(dpi=150, figsize=(6, 4.5), dpi_save=300)
adata = read_visium_hd("./data/visium-hd/mouse-intesitine/square_016um/")
stepc = scModel(
adata=adata,
n_top_genes=2000,
)
stepc.run(epochs=400, batch_size=1024,)
adata = stepc.adata
sc.pp.neighbors(adata, use_rep='X_rep', n_neighbors=60)
sc.tl.umap(adata)
sc.tl.leiden(adata)
sc.pl.umap(adata, color='leiden')
sc.pl.spatial(adata, color='leiden')
stepc.save("./results/visium-hd/config")
adata.write_h5ad("./results/visium-hd/mouse_intesitine_16um.h5ad")
adata = read_visium_hd("./data/visium-hd/mouse-intesitine/square_008um/")
stepc = stModel(
adata=adata,
n_top_genes=2000,
edge_clip=1,
)
stepc.run()
stepc = stModel.load("./results/visium-hd/mouse-intestine/config-8um/",
filepath='./results/visium-hd/mouse_intesitine_8um.h5ad')
stepc.cluster(n_clusters=8)
stepc.spatial_plot(color='domain')
import torch
torch.cuda.empty_cache()
stepc.add_embed(key_added='X_rep')
adata = stepc.adata
sc.pp.neighbors(adata, use_rep='X_rep', n_neighbors=60)
sc.tl.umap(adata)
stepc.save("./results/visium-hd/mouse-intestine/config-8um")
adata.write_h5ad("./results/visium-hd/mouse_intesitine_8um.h5ad")
adata = sc.read_h5ad("./results/visium-hd/mouse_intesitine_8um.h5ad")
sc.pl.umap(adata, color='domain', show=False, save='8um_domain.svg')
adata = stepc.adata
sc.tl.rank_genes_groups(adata, groupby='domain', method='wilcoxon', dendrogram=False, use_raw=True)
sc.tl.dendrogram(adata, groupby='domain')sc.settings.figdir = "./results/visium-hd/mouse-intestine/config-8um/"
sc.pl.rank_genes_groups_matrixplot(adata,
groupby='domain',
values_to_plot='logfoldchanges',
cmap='RdBu_r',
use_raw=True,
vmin=-4, vmax=4, save="8um_domain.svg")
adata = read_visium_hd("./data/visium-hd/mouse-intesitine/square_008um/")
stepc = scModel(
adata=adata,
n_top_genes=2000,
)
stepc.run(epochs=400, batch_size=4096)
adata = stepc.adata
sc.pp.neighbors(adata, use_rep='X_rep', n_neighbors=60)
sc.tl.umap(adata)
sc.tl.leiden(adata, resolution=0.8)
sc.pl.umap(adata, color='leiden')
sc.pl.spatial(adata, color='leiden')
sc.set_figure_params(dpi_save=300, figsize=(12, 9))
sc.settings.figdir = "./results/visium-hd/mouse-intestine/config-8um/"
sc.pl.spatial(adata, color='leiden', frameon=False, save='_leiden_8um.svg')
sc.pl.umap(adata, color='leiden', frameon=False, save='_leiden_8um.svg', show=False)
# sc.pl.spatial(adata, color='leiden',)
sc.pl.spatial(adata, color='leiden', groups=['6', '7'], img_key=None)
adata.obs['leiden'] = adata.obs['leiden'].astype(str).apply(lambda x: '0' if x in ['10', '11'] else x)
adata.obs['leiden'] = pd.Categorical(adata.obs['leiden'])
sc.pl.umap(adata, color='leiden', show=False, save='_leiden_8um.svg')
sc.pl.spatial(adata, color='leiden', frameon=False, show=False, save='_leiden_8um.svg')
sc.tl.rank_genes_groups(adata, groupby='leiden', method='wilcoxon', dendrogram=False, use_raw=True)
sc.tl.dendrogram(adata, groupby='leiden')
sc.settings.figdir = "./results/visium-hd/mouse-intestine/config-8um/"
sc.pl.rank_genes_groups_matrixplot(adata,
groupby='leiden',
values_to_plot='logfoldchanges',
cmap='RdBu_r',
use_raw=True,
vmin=-4, vmax=4, save="8um_ct.svg")
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。