前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >全志R128 SDK HAL 模块开发指南之 SPI

全志R128 SDK HAL 模块开发指南之 SPI

作者头像
阿志小管家
发布2024-04-25 20:35:55
1790
发布2024-04-25 20:35:55
举报
文章被收录于专栏:全志嵌入式那些事

SPI

模块功能介绍

SPI是一种全双工同步串行接口,可以工作在Master模式和Slave模式,SPI主要有以下特点:

  • 全双工同步串行接口
  • Master/Slave模式可配置
  • 支持最大96MHz时钟频率
  • 支持SPI Mode0/1/2/3
  • 片选和时钟的极性和相位可配置
  • 5个时钟源
  • 支持中断或DMA传输
  • 支持多片选
  • 支持Standard Single/Dual/Quad SPI,FIFO深度64B
  • 支持BIT模式,用于3Wire场景,支持可编程0~32bits帧长度(仅支持Master模式,且不支持DMA和FIFO功能)
  • 支持DBI模式,用于显示设备场景,用于传输视频数据

模块配置介绍

目前有两种方法进行引脚配置:sys_config和平台头文件。

这两种方法选其中一种使用即可,在没有sys_config文件配置时,默认使用平台头文件。当检测到有sys_config文件并有相关关键字时,自动切换为该方法。

sys_config文件引脚配置说明

引脚配置在 source/project/方案/configs/sys_config.fex

代码语言:javascript
复制
[spi1]
spi1_used       = 1
spi1_cs_number  = 1
spi1_cs_bitmap  = 1
spi1_cs0        = port:PA02<2><0><2><default>
spi1_sclk       = port:PA03<2><0><2><default>
spi1_mosi       = port:PA04<2><0><2><default>
spi1_miso       = port:PA05<2><0><2><default>
spi1_hold       = port:PA06<2><0><2><default>
spi1_wp         = port:PA07<2><0><2><default>
平台头文件资源配置说明

引脚配置在 rtos-hal/hal/source/spi/platform/spi_sun20iw2.h

代码语言:javascript
复制
static struct sunxi_spi_params_t g_sunxi_spi_params[] = {
	/* SPI0 */
	{	.port = 0,
		.reg_base = SUNXI_SPI0_PBASE, .irq_num = SUNXI_IRQ_SPI0, .gpio_num = 6,
		.pclk_pll_type = HAL_SUNXI_AON_CCU, .pclk_pll_id = CLK_DEVICE,
		.pclk_hosc_type = HAL_SUNXI_AON_CCU, .pclk_hosc_id = CLK_HOSC,
		.bus_type = HAL_SUNXI_CCU, .bus_id = CLK_BUS_SPI0,
		.mclk_type = HAL_SUNXI_CCU, .mclk_id = CLK_SPI0,
		.reset_type = HAL_SUNXI_RESET, .reset_id = RST_SPI0,
		.gpio_clk = GPIOB(6), .gpio_mosi = GPIOB(5), .gpio_miso = GPIOB(15),
		.gpio_cs0 = GPIOB(4), .gpio_wp = GPIOB(14), .gpio_hold = GPIOB(7),
		.mux = 4, .driv_level = GPIO_DRIVING_LEVEL2,
	#ifdef CONFIG_DRIVERS_DMA
		.drq_tx = DRQDST_SPI0_TX, .drq_rx = DRQSRC_SPI0_RX,
	#endif
		.rx_fifosize = 64, .tx_fifosize = 64, .dma_force_fixed = true,
	},
	......
};
menuconfig 配置说明

配置路径如下:

代码语言:javascript
复制
Kernel Setup  --->
	Drivers Setup  --->
		SoC HAL Drivers  --->
			SPI Devices  --->
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

源码结构介绍

SPI 模块代码结构如下所示:

代码语言:javascript
复制
rtos-hal/
|--include/hal/sunxi_hal_spi.h          // hal层数据结构和API接口相关头文件
|--hal/source/spi/platform_spi.h        // hal层平台相关头文件
|--hal/source/spi/platform/spi_xxx.h    // hal层平台信息相关头文件
|--hal/source/spi/common_spi.h          // hal层控制器寄存器相关头文件
|--hal/source/spi/hal_spi.c             // hal层接口驱动代码
|
|--hal/test/spi/test_spi.c              // hal层接口测试代码
|--hal/test/spi/spi_slave_driver.c      // hal层slave模式驱动代码
|--hal/test/spi/test_spi_slave.c        // hal层slave模式测试代码

模块接口说明

需要包含头文件:

代码语言:javascript
复制
#include <hal/sunxi_hal_spi.h>

重要结构体及宏定义

SPI模式功能选择
代码语言:javascript
复制
#define	SPI_CPHA		BIT(0)	/* clock phase */
#define	SPI_CPOL		BIT(1)	/* clock polarity */

#define	SPI_MODE_0		(0|0)
#define	SPI_MODE_1		(0|SPI_CPHA)
#define	SPI_MODE_2		(SPI_CPOL|0)
#define	SPI_MODE_3		(SPI_CPOL|SPI_CPHA)

#define	SPI_CS_HIGH		BIT(2)	/* chipselect active high? */
#define	SPI_LSB_FIRST	BIT(3)	/* per-word bits-on-wire */
#define	SPI_3WIRE		BIT(4)	/* SI/SO signals shared */
#define	SPI_LOOP		BIT(5)	/* loopback mode */
#define	SPI_NO_CS		BIT(6)	/* 1 dev/bus, no chipselect */
#define	SPI_READY		BIT(7)	/* slave pulls low to pause */
#define	SPI_TX_DUAL		BIT(8)	/* transmit with 2 wires */
#define	SPI_TX_QUAD		BIT(9)	/* transmit with 4 wires */
#define	SPI_RX_DUAL		BIT(10)	/* receive with 2 wires */
#define	SPI_RX_QUAD		BIT(11)	/* receive with 4 wires */
  • SPI_MODE_0/1/2/3:设置SPI的传输模式。
  • SPI_CS_HIGH:设置CS片选是否为高电平有效。
  • SPI_LSB_FIRST:设置发送顺序是低位在前。
  • SPI_3WIRE:设置SPI工作在3线模式下,及MOSI即用作输入也用作输入,实现半双工通信
SPI控制器模式配置
代码语言:javascript
复制
typedef enum
{
	HAL_SPI_BUS_MASTER = 0,
	HAL_SPI_BUS_SLAVE = 1,
	HAL_SPI_BUS_BIT = 2,
} hal_spi_master_bus_mode_t;
  • HAL_SPI_BUS_MASTER:处于Master模式,外接SPI Device。
  • HAL_SPI_BUS_SLAVE:处于Slave模式,被其他Master访问。
  • HAL_SPI_BUS_BIT:处于BIT模式,使用3Wire方式进行数据传输。
SPI控制器片选模式
代码语言:javascript
复制
typedef enum
{
	HAL_SPI_CS_AUTO = 0,
	HAL_SPI_CS_SOFT = 1,
} hal_spi_master_cs_mode_t;
  • HAL_SPI_CS_AUTO:硬件自动控制,不需要驱动或软件介入。
  • HAL_SPI_CS_SOFT:软件手动控制,由驱动完成相关操作。
SPI控制器采样模式
代码语言:javascript
复制
typedef enum
{
	SUNXI_SPI_SAMP_MODE_OLD = 0,
	SUNXI_SPI_SAMP_MODE_NEW = 1,
} hal_spi_master_bus_sample_mode_t;
  • SUNXI_SPI_SAMP_MODE_OLD:粗调模式,共有3档可调
  • SUNXI_SPI_SAMP_MODE_NEW:细调模式,共有7档可调

粗调模式为驱动根据时钟频率自动识别,不需要额外配置

代码语言:javascript
复制
typedef enum
{
	SUNXI_SPI_SAMP_DELAY_CYCLE_0_0 = 0,
	SUNXI_SPI_SAMP_DELAY_CYCLE_0_5 = 1,
	SUNXI_SPI_SAMP_DELAY_CYCLE_1_0 = 2,
	SUNXI_SPI_SAMP_DELAY_CYCLE_1_5 = 3,
	SUNXI_SPI_SAMP_DELAY_CYCLE_2_0 = 4,
	SUNXI_SPI_SAMP_DELAY_CYCLE_2_5 = 5,
	SUNXI_SPI_SAMP_DELAY_CYCLE_3_0 = 6,
} hal_spi_master_spi_sample_mode_t;
  • SUNXI_SPI_SAMP_DELAY_CYCLE:采样延时调节挡位选择

当采样模式处于细调时,才会使用到该参数

SPI控制器配置结构体
代码语言:javascript
复制
typedef struct
{
	hal_spi_master_bus_mode_t bus_mode; // SPI控制器配置
	hal_spi_master_cs_mode_t cs_mode;   // SPI控制器片选模式
	hal_spi_master_bus_sample_mode_t bus_sample_mode;   // SPI控制器采样模式 - 粗调
	hal_spi_master_spi_sample_mode_t spi_sample_mode;   // SPI控制器采样模式 - 细调
	uint32_t spi_sample_delay;  // SPI控制器细调采样延时
	uint8_t chipselect; /* SPI slave device selection */
	uint32_t clock_frequency; /* SPI master clock frequency setting */
	uint32_t mode;  // SPI模式/功能选择
	bool sip;
	bool flash;
} hal_spi_master_config_t;
SPI传输结构体
代码语言:javascript
复制
typedef struct
{
	const uint8_t *tx_buf;	/* Data buffer to send */
	uint32_t tx_len;		/* The total number of bytes to send */
	uint32_t tx_single_len;	/* The number of bytes to send in single mode */
	uint8_t *rx_buf;		/* Received data buffer, */
	uint32_t rx_len;		/* The valid number of bytes received */
	uint8_t tx_nbits : 3;	/* Data buffer to send in nbits mode */
	uint8_t rx_nbits : 3;	/* Data buffer to received in nbits mode */
	uint8_t dummy_byte;		/* Flash send dummy byte, default 0*/
#define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
#define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
#define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
	uint8_t bits_per_word;	/* transfer bit_per_word */
} hal_spi_master_transfer_t;

对外提供的API接口

hal_spi_init
  • 原型:
代码语言:javascript
复制
hal_spi_master_status_t hal_spi_init(int port, hal_spi_master_config_t *cfg)
  • 作用:SPI模块初始化,主要申请中断、pinctrl初始化、clk初始化、SPI模块,包括SPI总线最大传输速率、片选模式等等
  • 参数:
    • port:SPI端口号
    • cfg:配置信息
  • 返回:
    • 0:成功
    • 负数:失败
hal_spi_deinit
  • 原型:
代码语言:javascript
复制
hal_spi_master_status_t hal_spi_deinit(int port)
  • 作用:SPI模块去初始化
  • 参数:
    • port:SPI端口号
  • 返回:
    • 0:成功
    • 负数:失败
hal_spi_write
  • 原型:
代码语言:javascript
复制
hal_spi_master_status_t hal_spi_write(int port, const uint8_t *buf, uint32_t size)
  • 作用:发送数据,调hal_spi_xfer接口
  • 参数:
    • port:SPI端口号
    • buf:发送数据
    • size:发送数据大小
  • 返回:
    • 0:成功
    • 负数:失败
hal_spi_read
  • 原型:
代码语言:javascript
复制
hal_spi_master_status_t hal_spi_read(int port, uint8_t *buf, uint32_t size)
  • 作用:接收数据,调hal_spi_xfer接口
  • 参数:
    • port:SPI端口号
    • buf:接收数据
    • size:接收数据大小
  • 返回:
    • 0:成功
    • 负数:失败
hal_spi_xfer
  • 原型:
代码语言:javascript
复制
hal_spi_master_status_t hal_spi_xfer(int port, hal_spi_master_transfer_t *t, int num)
  • 作用:发送或接收数据
  • 参数:
    • port:SPI端口号
    • t:指向传输包头的指针
    • num:传输包的个数
  • 返回:
    • 0:成功
    • 负数:失败
hal_spi_slave_abort
  • 原型:
代码语言:javascript
复制
hal_spi_master_status_t hal_spi_slave_abort(int port)
  • 作用:终止slave模式传输
  • 参数:
    • port:SPI端口号
  • 返回:
    • 0:成功
    • 负数:失败

模块使用范例

Master模式使用及测试范例
代码语言:javascript
复制
hal_spi_master_config_t cfg = { 0 };
cfg.bus_mode = HAL_SPI_BUS_MASTER;
cfg.cs_mode = HAL_SPI_CS_AUTO;
cfg.clock_frequency = 10000000;
cfg.chipselect = 0;
cfg.mode = SPI_MODE_0;
cfg.sip = 0;
cfg.flash = 0;
hal_spi_init(port, &cfg);
BIT模式使用及测试范例
代码语言:javascript
复制
hal_spi_master_config_t cfg = { 0 };
cfg.bus_mode = HAL_SPI_BUS_BIT;
......
hal_spi_init(port, &cfg);

hal_spi_master_transfer_t tr = {
	.tx_buf = &buf,
	.tx_len = 1,
	.rx_buf = NULL,
	.rx_len = 0,
	.bits_per_word = 8,
};
hal_spi_xfer(port, tr, 1);
测试范例
代码语言:javascript
复制
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <getopt.h>
#include <sys/time.h>

#include <hal_log.h>
#include <hal_cmd.h>
#include <hal_mem.h>
#include <hal_timer.h>
#include <sunxi_hal_spi.h>

#define KB (1024)
#define MB (1024*KB)
#define US (1)
#define MS (1000*US)
#define S  (1000*MS)

static void pabort(const char *s)
{
	if (errno != 0)
		perror(s);
	else
		hal_log_err("%s\n", s);

	abort();
}

static int port = 1;
static uint32_t mode;
static uint8_t bits = 8;
static uint32_t speed = 5000000;
static int verbose;
static int transfer_size;
static int iterations;

static uint8_t default_tx[] = {
	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
	0x40, 0x00, 0x00, 0x00, 0x00, 0x95,
	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
	0xF0, 0x0D,
};

static uint8_t default_rx[sizeof(default_tx)];
static char *input_tx;

static void hex_dump(const void *src, size_t length, size_t line_size,
			 char *prefix)
{
	int i = 0;
	const unsigned char *address = src;
	const unsigned char *line = address;
	unsigned char c;

	printf("%s | ", prefix);
	while (length-- > 0) {
		printf("%02X ", *address++);
		if (!(++i % line_size) || (length == 0 && i % line_size)) {
			if (length == 0) {
				while (i++ % line_size)
					printf("__ ");
			}
			printf(" |");
			while (line < address) {
				c = *line++;
				printf("%c", (c < 32 || c > 126) ? '.' : c);
			}
			printf("|\n");
			if (length > 0)
				printf("%s | ", prefix);
		}
	}
}

/*
 *  Unescape - process hexadecimal escape character
 *      converts shell input "\x23" -> 0x23
 */
static int unescape(char *_dst, char *_src, size_t len)
{
	int ret = 0;
	int match;
	char *src = _src;
	char *dst = _dst;
	unsigned int ch;

	while (*src) {
		if (*src == '\\' && *(src+1) == 'x') {
			match = sscanf(src + 2, "%2x", &ch);
			if (!match)
				pabort("malformed input string");

			src += 4;
			*dst++ = (unsigned char)ch;
		} else {
			*dst++ = *src++;
		}
		ret++;
	}
	return ret;
}

static unsigned long transfer(int port, uint8_t const *tx, uint8_t const *rx, size_t len)
{
	hal_spi_master_status_t ret = 0;
	unsigned long usec = 0;
	struct timeval start, end;
	hal_spi_master_transfer_t tr = {
		.tx_buf = (uint8_t *)tx,
		.tx_len = len,
		.rx_buf = (uint8_t *)rx,
		.rx_len = len,
		.tx_single_len = len,
		.dummy_byte = 0,
		.bits_per_word = bits,
	};

	if (mode & SPI_TX_QUAD)
		tr.tx_nbits = 4;
	else if (mode & SPI_TX_DUAL)
		tr.tx_nbits = 2;
	else if (mode & SPI_RX_QUAD)
		tr.rx_nbits = 4;
	else if (mode & SPI_RX_DUAL)
		tr.rx_nbits = 2;
	if (!(mode & SPI_LOOP)) {
		if (mode & (SPI_TX_QUAD | SPI_TX_DUAL))
			tr.rx_buf = 0;
		else if (mode & (SPI_RX_QUAD | SPI_RX_DUAL))
			tr.tx_buf = 0;
		else if (mode & SPI_3WIRE)
			tr.rx_buf = 0;
	}

	gettimeofday(&start, NULL);
	ret = hal_spi_xfer(port, &tr, 1);
	gettimeofday(&end, NULL);
	if (ret < 0)
		pabort("can't send spi message");

	if (verbose)
	{
		hex_dump(tx, len, 32, "TX");
		hex_dump(rx, len, 32, "RX");
	}

	if (memcmp(tx, rx, len))
		hal_log_info("rx/tx buffer is not same, data error!!!\n");

	usec = (1000000 * (end.tv_sec - start.tv_sec) + end.tv_usec - start.tv_usec);
	return usec;
}

static void print_usage(const char *prog)
{
	hal_log_info("Usage: %s [-DsblHOLC3vpNR24SI]\n", prog);
	puts("  -D --device   device port to use (default 1)\n"
	     "  -s --speed    max speed (Hz)\n"
	     "  -b --bpw      bits per word\n"
	     "  -l --loop     loopback\n"
	     "  -H --cpha     clock phase\n"
	     "  -O --cpol     clock polarity\n"
	     "  -L --lsb      least significant bit first\n"
	     "  -C --cs-high  chip select active high\n"
	     "  -3 --3wire    SI/SO signals shared\n"
	     "  -v --verbose  Verbose (show tx buffer)\n"
	     "  -p            Send data (e.g. \"1234\\xde\\xad\")\n"
	     "  -N --no-cs    no chip select\n"
	     "  -R --ready    slave pulls low to pause\n"
	     "  -2 --dual     dual transfer\n"
	     "  -4 --quad     quad transfer\n"
	     "  -S --size     transfer size\n"
	     "  -I --iter     iterations\n");
}

static int parse_opts(int argc, char *argv[])
{
	int ret = 0;

	while (1) {
		static const struct option lopts[] = {
			{ "device",  1, 0, 'D' },
			{ "speed",   1, 0, 's' },
			{ "bpw",     1, 0, 'b' },
			{ "loop",    0, 0, 'l' },
			{ "cpha",    0, 0, 'H' },
			{ "cpol",    0, 0, 'O' },
			{ "lsb",     0, 0, 'L' },
			{ "cs-high", 0, 0, 'C' },
			{ "3wire",   0, 0, '3' },
			{ "no-cs",   0, 0, 'N' },
			{ "ready",   0, 0, 'R' },
			{ "dual",    0, 0, '2' },
			{ "verbose", 0, 0, 'v' },
			{ "quad",    0, 0, '4' },
			{ "size",    1, 0, 'S' },
			{ "iter",    1, 0, 'I' },
			{ NULL, 0, 0, 0 },
		};
		int c;

		c = getopt_long(argc, argv, "D:s:b:lHOLC3NR24p:vS:I:",
				lopts, NULL);

		if (c == -1)
			break;

		switch (c) {
		case 'D':
			port = atoi(optarg);
			break;
		case 's':
			speed = atoi(optarg);
			break;
		case 'b':
			bits = atoi(optarg);
			break;
		case 'l':
			mode |= SPI_LOOP;
			break;
		case 'H':
			mode |= SPI_CPHA;
			break;
		case 'O':
			mode |= SPI_CPOL;
			break;
		case 'L':
			mode |= SPI_LSB_FIRST;
			break;
		case 'C':
			mode |= SPI_CS_HIGH;
			break;
		case '3':
			mode |= SPI_3WIRE;
			break;
		case 'N':
			mode |= SPI_NO_CS;
			break;
		case 'v':
			verbose = 1;
			break;
		case 'R':
			mode |= SPI_READY;
			break;
		case 'p':
			input_tx = optarg;
			break;
		case '2':
			mode |= SPI_TX_DUAL;
			break;
		case '4':
			mode |= SPI_TX_QUAD;
			break;
		case 'S':
			transfer_size = atoi(optarg);
			break;
		case 'I':
			iterations = atoi(optarg);
			break;
		default:
			print_usage(argv[0]);
			ret = -1;
		}
	}
	if (mode & SPI_LOOP) {
		if (mode & SPI_TX_DUAL)
			mode |= SPI_RX_DUAL;
		if (mode & SPI_TX_QUAD)
			mode |= SPI_RX_QUAD;
	}

	return ret;
}

static void transfer_escaped_string(int port, char *str)
{
	size_t size = strlen(str);
	uint8_t *tx;
	uint8_t *rx;

	tx = hal_malloc(size);
	if (!tx)
		pabort("can't allocate tx buffer");

	rx = hal_malloc(size);
	if (!rx)
		pabort("can't allocate rx buffer");

	size = unescape((char *)tx, str, size);
	transfer(port, tx, rx, size);
	hal_free(rx);
	hal_free(tx);
}

static void show_transfer_info(unsigned long size, unsigned long time)
{
	double rate;

	printf("total size   : ");
	if (size >= MB) {
		printf("%.2lf MB", (double)size/(double)MB);
	} else if (size >= KB) {
		printf("%.2lf KB", (double)size/(double)KB);
	} else {
		printf("%lu B", size);
	}
	printf("\n");

	printf("total time   : ");
	if (time >= S) {
		printf("%.2lf s", (double)time/(double)S);
	} else if (time >= MS) {
		printf("%.2lf ms", (double)time/(double)MS);
	} else {
		printf("%.2lf us", (double)time/(double)US);
	}
	printf("\n");

	rate = ((double)size / (double)MB) / ((double)time / (double)S);
	printf("averange rate: %.2lf MB/s\n", rate);
}

static unsigned long transfer_buf(int port, int len)
{
	uint8_t *tx;
	uint8_t *rx;
	int i;
	unsigned long usec = 0;

	tx = hal_malloc(len);
	if (!tx)
		pabort("can't allocate tx buffer");

	srand(time(NULL));
	for (i = 0; i < len; i++)
		tx[i] = random();

	rx = hal_malloc(len);
	if (!rx)
		pabort("can't allocate rx buffer");

	usec = transfer(port, tx, rx, len);

	if (mode & SPI_LOOP) {
		if (memcmp(tx, rx, len)) {
			fprintf(stderr, "transfer error !\n");
			hex_dump(tx, len, 32, "TX");
			hex_dump(rx, len, 32, "RX");
			exit(1);
		}
	}

	hal_free(rx);
	hal_free(tx);

	return usec;
}

static int cmd_spidev_test(int argc, char **argv)
{
	hal_spi_master_config_t cfg = { 0 };

	port = 1;
	mode = 0;
	bits = 8;
	speed = 5000000;
	verbose = 0;
	transfer_size = 0;
	iterations = 0;
	input_tx = NULL;
	memset(default_rx, 0, sizeof(default_rx));

	if (parse_opts(argc, argv) < 0) {
		return 0;
	}

	if (mode & SPI_3WIRE)
		cfg.bus_mode = HAL_SPI_BUS_BIT;
	else
		cfg.bus_mode = HAL_SPI_BUS_MASTER;
	cfg.cs_mode = HAL_SPI_CS_AUTO;
	cfg.clock_frequency = speed;
	cfg.chipselect = 0;
	cfg.mode = mode;
	cfg.sip = 0;
	cfg.flash = 0;
	hal_spi_init(port, &cfg);

	hal_log_info("spi mode: 0x%x\n", mode);
	hal_log_info("bits per word: %u\n", bits);
	hal_log_info("max speed: %u Hz (%u kHz)\n", speed, speed/1000);

	if (input_tx)
		transfer_escaped_string(port, input_tx);
	else if (transfer_size) {
		unsigned long total_size = transfer_size * iterations;
		unsigned long total_usec = 0;
		int i;

		for (i = 0; i < iterations; i++)
			total_usec += transfer_buf(port, transfer_size);

		show_transfer_info(total_size, total_usec);
		printf("averange time: %.2lf us\n", (double)total_usec/(double)(iterations));
	} else
		transfer(port, default_tx, default_rx, sizeof(default_tx));

	hal_spi_deinit(port);

	return 0;
}

FINSH_FUNCTION_EXPORT_CMD(cmd_spidev_test, hal_spidev_test, spidev hal APIs tests)

Slave模式使用及测试范例

Slave模式使用范例

重点代码:

代码语言:javascript
复制
hal_spi_master_config_t cfg = { 0 };
cfg.bus_mode = HAL_SPI_BUS_SLAVE;
cfg.clock_frequency = 10000000;
cfg.chipselect = 0;
cfg.mode = SPI_MODE_0;
hal_spi_init(port, &cfg);
代码语言:javascript
复制
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <sys/time.h>

#include <hal_log.h>
#include <hal_cmd.h>
#include <hal_mem.h>
#include <hal_timer.h>
#include <hal_thread.h>
#include <sunxi_hal_spi.h>
#include <platform_spi.h>

#ifdef CONFIG_ARCH_SUN20IW2
#define SPI_SLAVE_THREAD_STACK_SIZE 4096
#else
#define SPI_SLAVE_THREAD_STACK_SIZE 8192
#endif

#define SLAVE_CACHE_MAX (4096)

#define PKT_HEAD_LEN 5
#define OP_MASK		0
#define ADDR_MASK_0	1
#define ADDR_MASK_1	2
#define LEN_MASK_0	3
#define LEN_MASK_1	4

#define SUNXI_OP_WRITE	0x01
#define SUNXI_OP_READ	0x03
#define SUNXI_OP_HEAD	0xff

enum sunxi_spi_slave_status {
	SUNXI_SPI_SLAVE_NONE = 0,
	SUNXI_SPI_SLAVE_RUNNING,
	SUNXI_SPI_SLAVE_RETRY,
	SUNXI_SPI_SLAVE_STOP,
};

struct sunxi_spi_slave_head {
	u8 op_code;
	u16 addr;
	u16 len;
};

struct sunxi_spi_slave_frame {
	u8 data[PKT_HEAD_LEN];
	struct sunxi_spi_slave_head pkt_head;
	u8 *tx_buf;
	u8 *rx_buf;
};

struct sunxi_spi_slave_cache {
	hal_spinlock_t buffer_lock;
	u8 *buffer;
	u32 size;
};

struct sunxi_spi_slave_test {
	int  port;
	hal_spi_master_config_t cfg;
	hal_sem_t semaphore_finished;
	hal_spi_master_transfer_t xfer;
	struct sunxi_spi_slave_frame frame;
	struct sunxi_spi_slave_cache cache;
	enum sunxi_spi_slave_status status;
	hal_thread_t thread_handle;
	char task_name[256];
};

static struct sunxi_spi_slave_test spi_slave_test[HAL_SPI_MASTER_MAX];

static bool sunxi_spi_dump_data(const uint8_t *buf, uint32_t offset, uint32_t len)
{
	int col = 16;
	int line = len / col;
	int last = len % col;
	int i, j;
	uint8_t *buffer = (int8_t *)buf + offset;

	for (i = 0; i < line; i++) {
		printf("%08X: ", i + offset);
		for (j = 0; j < col; j++) {
			printf("%02x ", buffer[col * i + j]);
		}
		printf("\n");
	}

	printf("%08X: ", col * line + offset);
	for (j = 0; j < last; j++) {
		printf("%02x ", buffer[col * line + j]);
	}
	printf("\n");
}

int sunxi_spi_init_slave_data(struct sunxi_spi_slave_test *slave, u8 pattern)
{
	memset(slave->cache.buffer, pattern, slave->cache.size);
	return 0;
}

static bool sunxi_spi_slave_has_ptk_head(struct sunxi_spi_slave_head *head)
{
	if (head->op_code || head->addr || head->len)
		return true;

	return false;
}

static void sunxi_spi_slave_head_data_parse(unsigned char *data, struct sunxi_spi_slave_head *head)
{
	head->op_code = data[OP_MASK];
	head->addr = (data[ADDR_MASK_0] << 8) | data[ADDR_MASK_1];
	head->len = (data[LEN_MASK_0] << 8) | data[LEN_MASK_1];
}

static void sunxi_spi_slave_head_data_clear(unsigned char *data, int len)
{
	memset(data, 0, len);
}

static int sunxi_spi_slave_set_cache_data(struct sunxi_spi_slave_test *slave,
									struct sunxi_spi_slave_head *head, u8 *buf)
{
	struct sunxi_spi_slave_cache *cache = &slave->cache;
	int real_size = head->len;

	if (cache->size < head->addr) {
		hal_log_err("Set data addr over range");
		return 0;
	}

	if (cache->size < head->addr + head->len) {
		real_size = cache->size - head->addr;
		hal_log_err("Write size %d over range, some of data will be lost, real size to write is %d",
				head->len, real_size);
	}

	hal_spin_lock(&cache->buffer_lock);
	memcpy(cache->buffer + head->addr, buf, real_size);
	hal_spin_unlock(&cache->buffer_lock);

	return 0;
}

static int sunxi_spi_slave_get_cache_data(struct sunxi_spi_slave_test *slave,
										struct sunxi_spi_slave_head *head, u8 *buf)
{
	struct sunxi_spi_slave_cache *cache = &slave->cache;
	int real_size = head->len;

	if (cache->size < head->addr) {
		hal_log_err("Get data addr over range");
		return 0;
	}

	if (cache->size < head->addr + head->len) {
		real_size = cache->size - head->addr;
		hal_log_err("Read size %d over range, some of data will be lost, real size to read is %d",
			head->len, real_size);
	}

	hal_spin_lock(&cache->buffer_lock);
	memcpy(buf, cache->buffer + head->addr, real_size);
	hal_spin_unlock(&cache->buffer_lock);

	return 0;
}

static int sunxi_spi_slave_test_submit(struct sunxi_spi_slave_test *slave)
{
	struct sunxi_spi_slave_head *pkt_head = &slave->frame.pkt_head;
	int ret;

	sunxi_spi_slave_head_data_parse(slave->frame.data, pkt_head);

	if (!sunxi_spi_slave_has_ptk_head(pkt_head)) {
		hal_log_debug("No Package head, wait revice from master");
		pkt_head->op_code = SUNXI_OP_HEAD;
		slave->xfer.rx_buf = slave->frame.data;
		slave->xfer.rx_len = sizeof(slave->frame.data);
	} else {
		sunxi_spi_slave_head_data_clear(slave->frame.data, sizeof(slave->frame.data));
		hal_log_debug("op=0x%x addr=0x%x len=0x%x", pkt_head->op_code, pkt_head->addr, pkt_head->len);

		switch (pkt_head->op_code) {
		case SUNXI_OP_WRITE:
			slave->frame.rx_buf = hal_malloc(pkt_head->len);
			slave->xfer.rx_buf = slave->frame.rx_buf;
			slave->xfer.tx_buf = NULL;
			slave->xfer.rx_len = pkt_head->len;
			break;
		case SUNXI_OP_READ:
			slave->frame.tx_buf = hal_malloc(pkt_head->len);
			slave->xfer.tx_buf = slave->frame.tx_buf;
			slave->xfer.rx_buf = NULL;
			slave->xfer.tx_len = pkt_head->len;
			sunxi_spi_slave_get_cache_data(slave, pkt_head, (u8 *)slave->xfer.tx_buf);
			hal_log_debug("sunxi slave get package operation read, send write buffer");
			sunxi_spi_dump_data(slave->xfer.tx_buf, 0, slave->xfer.len);
			break;
		default:
			hal_log_debug("unknown op code %d, wait revice from master", pkt_head->op_code);
			sunxi_spi_slave_head_data_clear(slave->frame.data, sizeof(slave->frame.data));
			pkt_head->op_code = SUNXI_OP_HEAD;
			slave->xfer.rx_buf = slave->frame.data;
			slave->xfer.tx_buf = NULL;
			slave->xfer.rx_len = sizeof(slave->frame.data);
			break;
		}
	}

	return hal_spi_xfer(slave->port, &slave->xfer, 1);
}

static void spi_slave_driver_thread(void *pArg)
{
	struct sunxi_spi_slave_test *slave = (struct sunxi_spi_slave_test *)pArg;
	struct sunxi_spi_slave_head *pkt_head;
	int ret;

	while (1) {
		ret = sunxi_spi_slave_test_submit(slave);
		if (ret != HAL_SPI_MASTER_OK) {
			switch (slave->status) {
			case SUNXI_SPI_SLAVE_RETRY:
				hal_log_warn("slave transfer retry");
				sunxi_spi_slave_head_data_clear(slave->frame.data, sizeof(slave->frame.data));
				goto retry;
				break;
			case SUNXI_SPI_SLAVE_STOP:
				hal_log_warn("slave transfer stop");
				goto terminate;
				break;
			default:
				hal_log_err("error status %d and ret %d", slave->status, ret);
				break;
			}
		}
		
		pkt_head = &slave->frame.pkt_head;
		switch (pkt_head->op_code) {
		case SUNXI_OP_HEAD:
			hal_log_debug("sunxi slave get package head");
			// sunxi_spi_dump_data(slave->xfer.rx_buf, 0, slave->xfer.len);
			break;
		case SUNXI_OP_WRITE:
			hal_log_debug("sunxi slave get package operation write, recv read buffer");
			// sunxi_spi_dump_data(slave->xfer.rx_buf, 0, slave->xfer.len);
			sunxi_spi_slave_set_cache_data(slave, pkt_head, slave->xfer.rx_buf);
			hal_free(slave->xfer.rx_buf);
			slave->xfer.rx_buf = NULL;
			slave->frame.rx_buf = NULL;
			break;
		case SUNXI_OP_READ:
			hal_log_debug("send write buffer done");
			hal_free((void *)slave->xfer.tx_buf);
			slave->xfer.tx_buf = NULL;
			slave->frame.tx_buf = NULL;
			break;
		default:
			hal_log_debug("sunxi slave get op_code filed");
			sunxi_spi_slave_head_data_clear(slave->frame.data, sizeof(slave->frame.data));
			break;
		}
	retry:
		memset(&slave->xfer, 0, sizeof(slave->xfer));
	}

terminate:
	hal_sem_post(slave->semaphore_finished);
}

static int spi_slave_driver_abort(int port)
{
	struct sunxi_spi_slave_test *slave = &spi_slave_test[port];

	hal_log_info("slave transfer abort");

	slave->status = SUNXI_SPI_SLAVE_RETRY;
	hal_spi_slave_abort(port);

	return 0;
}

static int spi_slave_driver_dump(int port, int addr, int size)
{
	struct sunxi_spi_slave_test *slave = &spi_slave_test[port];

	if (addr > slave->cache.size || addr + size > slave->cache.size) {
		hal_log_err("dump addr/size out of bounds");
		return -1;
	}

	sunxi_spi_dump_data(slave->cache.buffer, addr, size);

	return 0;
}

static int spi_slave_driver_probe(int port, uint32_t freq)
{
	struct sunxi_spi_slave_test *slave = &spi_slave_test[port];

	slave->port = port;
	slave->cfg.clock_frequency = freq;
	slave->cfg.chipselect = 0;
	slave->cfg.mode = SPI_MODE_0;
	slave->cfg.bus_mode = HAL_SPI_BUS_SLAVE;
	if (HAL_SPI_MASTER_OK != hal_spi_init(slave->port, &slave->cfg)) {
		hal_log_err("spi init failed");
		return -1;
	}

	slave->semaphore_finished = hal_sem_create(0);
	if (slave->semaphore_finished == NULL)
	{
		hal_log_err("[spi%d] creating semaphore_finished failed", slave->port);
		return -1;
	}

	hal_spin_lock_init(&slave->cache.buffer_lock);
	slave->cache.size = SLAVE_CACHE_MAX;
	slave->cache.buffer = hal_malloc(slave->cache.size);
	if (!slave->cache.buffer) {
		hal_log_err("alloc slave cache memory failed (size %d)", slave->cache.size);
		return -1;
	}

	sunxi_spi_init_slave_data(slave, 0xff);

	snprintf(slave->task_name, sizeof(slave->task_name), "spi%d-slave-task\0", slave->port);
	slave->thread_handle = hal_thread_create(spi_slave_driver_thread, slave, slave->task_name,
							SPI_SLAVE_THREAD_STACK_SIZE, HAL_THREAD_PRIORITY_SYS);
	if (slave->thread_handle == NULL) {
		hal_log_err("create thread %s failed", slave->task_name);
		return -1;
	}

	slave->status = SUNXI_SPI_SLAVE_RUNNING;

	hal_thread_start(slave->thread_handle);

	return 0;
}

static int spi_slave_driver_remove(int port)
{
	struct sunxi_spi_slave_test *slave = &spi_slave_test[port];

	slave->status = SUNXI_SPI_SLAVE_STOP;
	hal_spi_slave_abort(port);
	hal_sem_wait(slave->semaphore_finished);
	hal_thread_stop(slave->thread_handle);
	hal_free(slave->cache.buffer);
	hal_spin_lock_deinit(&slave->cache.buffer_lock);
	hal_spi_deinit(slave->port);

	return 0;
}

static void print_usage(const char *name)
{
	hal_log_info("Usage:");
	hal_log_info("\t%s probe <port> <freq>", name);
	hal_log_info("\t%s remove <port>", name);
	hal_log_info("\t%s abort <port>", name);
	hal_log_info("\t%s dump <port> <addr> <size>", name);
}

static int cmd_spi_slave_driver(int argc, const char **argv)
{
	int port;
	uint32_t freq;
	int addr, size;

	if (argc < 3) {
		print_usage(argv[0]);
		return -1;
	}

	port = strtol(argv[2], NULL, 0);
	if (port < 0 && port > HAL_SPI_MASTER_MAX) {
		hal_log_err("spi port %d not exist", port);
		return -1;
	}

	if (!strcmp(argv[1], "probe")) {
		freq = strtol(argv[3], NULL, 0);
		spi_slave_driver_probe(port, freq);
	}
	else if (!strcmp(argv[1], "remove"))
		spi_slave_driver_remove(port);
	else if (!strcmp(argv[1], "abort"))
		spi_slave_driver_abort(port);
	else if (!strcmp(argv[1], "dump")) {
		addr = strtol(argv[3], NULL, 0);
		size = strtol(argv[4], NULL, 0);
		spi_slave_driver_dump(port, addr, size);
	}
	else
		print_usage(argv[0]);

	return 0;
}

FINSH_FUNCTION_EXPORT_CMD(cmd_spi_slave_driver, hal_spi_slave_driver, spi hal slave driver test)
Slave 模式测试范例
代码语言:javascript
复制
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <sys/time.h>

#include <hal_log.h>
#include <hal_cmd.h>
#include <hal_mem.h>
#include <hal_timer.h>
#include <sunxi_hal_spi.h>
#include <platform_spi.h>
#define PKT_HEAD_LEN 5

#define OP_MASK		0
#define ADDR_MASK_0	1
#define ADDR_MASK_1	2
#define LEN_MASK_0	3
#define LEN_MASK_1	4

#define SUNXI_OP_WRITE	0x01
#define SUNXI_OP_READ	0x03

#define PKT_HEAD_DELAY	100
#define PKT_XFER_DELAY	500

#define KB (1024)
#define MB (1024*KB)
#define US (1)
#define MS (1000*US)
#define S  (1000*MS)

struct sunxi_spi_slave_head {
	unsigned int op_code;
	unsigned int addr;
	unsigned int len;
};

static int verbose;

static void hex_dump(const void *src, size_t length, size_t line_size,
		     char *prefix)
{
	int i = 0;
	const unsigned char *address = src;
	const unsigned char *line = address;
	unsigned char c;

	printf("%s | ", prefix);
	while (length-- > 0) {
		printf("%02X ", *address++);
		if (!(++i % line_size) || (length == 0 && i % line_size)) {
			if (length == 0) {
				while (i++ % line_size)
					printf("__ ");
			}
			printf(" |");
			while (line < address) {
				c = *line++;
				printf("%c", (c < 32 || c > 126) ? '.' : c);
			}
			printf("|\n");
			if (length > 0)
				printf("%s | ", prefix);
		}
	}
}

static void show_transfer_info(unsigned long size, unsigned long time)
{
	double rate;

	printf("total size   : ");
	if (size >= MB) {
		printf("%.2lf MB", (double)size/(double)MB);
	} else if (size >= KB) {
		printf("%.2lf KB", (double)size/(double)KB);
	} else {
		printf("%lu B", size);
	}
	printf("\n");

	printf("total time   : ");
	if (time >= S) {
		printf("%.2lf s", (double)time/(double)S);
	} else if (time >= MS) {
		printf("%.2lf ms", (double)time/(double)MS);
	} else if (time >= US) {
		printf("%.2lf us", (double)time/(double)US);
	} else {
		printf("%lu ns", time);
	}
	printf("\n");

	rate = ((double)size / (double)MB) / ((double)time / (double)S);
	printf("averange rate: %.2lf MB/s\n", rate);
}

static int transfer_pkg_create(char *buf, struct sunxi_spi_slave_head *head)
{
	buf[OP_MASK] = head->op_code;
	buf[ADDR_MASK_0] = (head->addr >> 8) & 0xff;
	buf[ADDR_MASK_1] = head->addr & 0xff;
	buf[LEN_MASK_0] = (head->len >> 8) & 0xff;
	buf[LEN_MASK_1] = head->len & 0xff;

	return 0;
}

static int transfer_slave_package(int port, struct sunxi_spi_slave_head *head, char *tx_buf, char *rx_buf)
{
	char head_buf[PKT_HEAD_LEN];
	hal_spi_master_transfer_t tr[2];
	int i;
	int ret;

	memset(tr, 0, sizeof(tr));

	transfer_pkg_create(head_buf, head);
	if (verbose) {
		printf("package head : { ");
		for (i = 0; i < PKT_HEAD_LEN; i++) {
			printf("0x%02x ", head_buf[i]);
		}
		printf("}\n");
	}

	tr[0].tx_buf = (uint8_t *)head_buf;
	tr[0].tx_nbits = SPI_NBITS_SINGLE;
	tr[0].tx_len = sizeof(head_buf);
    tr[0].tx_single_len = sizeof(head_buf);
	tr[0].rx_buf = (uint8_t *)NULL;
	tr[0].rx_nbits = 0;
    tr[0].rx_len = 0;

    tr[1].tx_buf = (uint8_t *)tx_buf;
	tr[1].tx_nbits = SPI_NBITS_SINGLE;
	tr[1].tx_len = head->len;
    tr[1].tx_single_len = head->len;
	tr[1].rx_buf = (uint8_t *)rx_buf;
	tr[1].rx_nbits = SPI_NBITS_SINGLE;
    tr[1].rx_len = head->len;

    hal_spi_xfer(port, &tr[0], 1);
    hal_usleep(PKT_HEAD_DELAY);
    hal_spi_xfer(port, &tr[1], 1);

	return 0;
}

static int transfer_slave(int port, uint32_t addr, uint32_t size)
{
	struct sunxi_spi_slave_head pkt_head;
	char *tx_buf = NULL;
	char *rx_buf = NULL;
	struct timeval start, end;
	unsigned long nsec = 0;
	int i;

	tx_buf = hal_malloc(size);
	srand(time(0));
	for (i = 0; i < size; i++)
		tx_buf[i] = random() % 256;

	rx_buf = hal_malloc(size);
	memset(rx_buf, 0, size);

	gettimeofday(&start, NULL);
	// Write forward
	pkt_head.op_code = SUNXI_OP_WRITE;
	pkt_head.addr = addr;
	pkt_head.len = size;
	transfer_slave_package(port, &pkt_head, tx_buf, NULL);
	hal_usleep(PKT_XFER_DELAY);
	// Read back
	pkt_head.op_code = SUNXI_OP_READ;
	pkt_head.addr = addr;
	pkt_head.len = size;
	transfer_slave_package(port, &pkt_head, NULL, rx_buf);
	gettimeofday(&end, NULL);
	// Debug
	if (verbose) {
		hex_dump(tx_buf, size, 32, "TX");
		hex_dump(rx_buf, size, 32, "RX");
	}
	// Compare buffer
	if (memcmp(tx_buf, rx_buf, size))
		printf("rx/tx buffer is not same, compare error!!!\n");
	else
		nsec += (1000000 * (end.tv_sec - start.tv_sec) + end.tv_usec - start.tv_usec);

	free(tx_buf);
	free(rx_buf);

	return nsec;
}

static void print_usage(const char *name)
{
    hal_log_info("Usage:");
	hal_log_info("\t%s <port> <freq> <addr> <size> <loop> [debug]", name);
}

static int cmd_test_spi_slave(int argc, const char **argv)
{
    int  port;
    hal_spi_master_config_t cfg;
    uint32_t addr, size;
    int loop = 1;
	unsigned long usec;
	unsigned long total_usec = 0;
	unsigned long total_size = 0;
    int i;

    if (argc < 6) {
		print_usage(argv[0]);
		return -1;
	}

    memset(&cfg, 0, sizeof(cfg));
    port = strtol(argv[1], NULL, 0);
	if (port < 0 && port > HAL_SPI_MASTER_MAX) {
		hal_log_err("spi port %d not exist", port);
		return -1;
	}

    addr = strtol(argv[3], NULL, 0);
    size = strtol(argv[4], NULL, 0);
    loop = strtol(argv[5], NULL, 0);

    if (argc == 7 && strcmp(argv[6], "debug") == 0)
        verbose = 1;
    else 
        verbose = 0;

	hal_log_info("run spi slave test");

    cfg.clock_frequency = strtol(argv[2], NULL, 0);
    cfg.chipselect = 0;
	cfg.mode = SPI_MODE_0;
	cfg.bus_mode = HAL_SPI_BUS_MASTER;
    hal_spi_init(port, &cfg);

	hal_log_info("max speed: %u Hz (%u kHz)", cfg.clock_frequency, cfg.clock_frequency/1000);
	hal_log_info("op addr : %d", addr);
	hal_log_info("op size : %d", size);

    if (size) {
		for (i = 0; i < loop; i++) {
			usec = transfer_slave(port, addr, size);
			if (usec) {
				total_usec += usec;
				total_size += (size * 2);
			}
		}
		show_transfer_info(total_size, total_usec);
		printf("averange time: %.2lf us\n", (double)total_usec/(double)US/(double)(loop));
	}

    hal_spi_deinit(port);

    hal_log_info("spi slave test finish");

	return 0;
}

FINSH_FUNCTION_EXPORT_CMD(cmd_test_spi_slave, hal_spi_slave_test, spi hal slave tests)

调试方法

使用 hal_log_info/warn/err/debug 等调试打印方法,可以根据需求修改系统配置,达到不同的打印等级

代码语言:javascript
复制
#define SPI_INFO(sspi, fmt, arg...)	hal_log_info("hal-sspi %08lx.sspi%d: " fmt, sspi->base, sspi->bus_num, ##arg)
#define SPI_WARN(sspi, fmt, arg...)	hal_log_warn("hal-sspi %08lx.sspi%d: " fmt, sspi->base, sspi->bus_num, ##arg)
#define SPI_ERR(sspi, fmt, arg...)	hal_log_err("hal-sspi %08lx.sspi%d: " fmt, sspi->base, sspi->bus_num, ##arg)
#define SPI_DBG(sspi, fmt, arg...)	hal_log_debug("hal-sspi %08lx.sspi%d: " fmt, sspi->base, sspi->bus_num, ##arg)

使用 SPI_DATA_LEVEL/SPI_DUMPREG_LEVEL 宏开关,可以在传输的过程中打印收发数据 buffer 及控制器寄存器值

调试工具

如果在 menuconfig 中将 spi test 配置打开,那么可以在 RTOS 系统中运行相应的 SPI 调试命令。

hal_spidev_test 测试SPI Single模式,可以配置端口,频率,数据量,循环次数等参数

  • hal_spidev_test -D <port> -s <freq> -S <size> -I <loop> [-v]

hal_spi_slave_driver Slave模式驱动,需要先再slave设备端跑起该驱动,才能在master端进行相应测试

  • hal_spi_slave_driver probe <port> <freq>
  • hal_spi_slave_driver remove <port>
  • hal_spi_slave_driver abort <port>
  • hal_spi_slave_driver dump <port> <addr> <size>

hal_spi_slave_test Slave模式测试命令,该命令需要在master端运行

  • hal_spi_slave_test <port> <freq> <addr> <size> <loop> [debug]

FAQ

多笔数据连续发送时,如何让CS脚保持使能

问题现象:每包数据发送后,CS脚都会翻转一次,重新使能,导致与外设通信异常

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

解决方法:将 cs_mode 配置为手动,并将需要CS信号包在内的多包数据,一次性传给驱动

代码语言:javascript
复制
hal_spi_master_config_t cfg = { 0 };
hal_spi_master_transfer_t tr[2];
......
cfg.cs_mode = HAL_SPI_CS_SOFT;
......
hal_spi_init(port, &cfg);
......
hal_spi_xfer(port, &tr, ARRAY_SIZE(tr));
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-04-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • SPI
    • 模块功能介绍
      • 模块配置介绍
        • sys_config文件引脚配置说明
        • 平台头文件资源配置说明
        • menuconfig 配置说明
      • 源码结构介绍
        • 模块接口说明
          • 重要结构体及宏定义
            • SPI模式功能选择
            • SPI控制器模式配置
            • SPI控制器片选模式
            • SPI控制器采样模式
            • SPI控制器配置结构体
            • SPI传输结构体
          • 对外提供的API接口
            • hal_spi_init
            • hal_spi_deinit
            • hal_spi_write
            • hal_spi_read
            • hal_spi_xfer
            • hal_spi_slave_abort
          • 模块使用范例
            • Master模式使用及测试范例
            • BIT模式使用及测试范例
            • 测试范例
          • Slave模式使用及测试范例
            • Slave模式使用范例
            • Slave 模式测试范例
        • 调试方法
          • 调试工具
            • FAQ
              • 多笔数据连续发送时,如何让CS脚保持使能
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档