胰腺是一个功能复杂的器官,它由多种不同的细胞类型组成,这些细胞在内分泌和外分泌功能中发挥着重要作用。在单细胞分析中,研究人员已经能够识别和区分多种胰腺细胞亚群。以下是一些主要的胰腺单细胞亚群:
单细胞RNA测序技术(scRNA-seq)的应用使得研究人员能够在更细致的层面上理解这些细胞亚群的异质性和功能。这些信息对于研究胰腺疾病的发病机制、开发新的治疗方法以及理解胰腺在健康和疾病中的作用至关重要。
其中干细胞/祖细胞(Stem/Progenitor cells)在很多单细胞转录组数据集里面是很难直接被定义的,而肿瘤细胞(Cancer cells)主要是来源于导管细胞(Ductal cells)的恶性的细胞,也有极少数胰腺腺泡细胞癌 (PACC) 是来源于腺泡细胞(Acid-producing cells)
RNA sequencing of human pancreatic acinar and ductal cells
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE222990
GSM6937790 fresh_acinar_RNAseq_1
GSM6937791 fresh_acinar_RNAseq_2
GSM6937792 fresh_acinar_RNAseq_3
GSM6937793 fresh_acinar_RNAseq_4
GSM6937794 fresh_acinar_RNAseq_5
GSM6937795 fresh_ductal_RNAseq_1
GSM6937796 fresh_ductal_RNAseq_2
GSM6937797 fresh_ductal_RNAseq_3
GSM6937798 fresh_ductal_RNAseq_4
GSM6937799 fresh_ductal_RNAseq_5
需要下载和读取这个GSE222990数据集的研究者们提供的 GSE222990_read_table.txt.gz 文件,然后去做差异分析,看看human pancreatic acinar and ductal cells在传统的bulk转录组测序数据里面的差异情况。
很简单的检索,可以发现很多 pancreatic islets of healthy human donors ,比如:
不过值得注意的是胰岛器官里面的主要的单细胞亚群是分泌细胞, 4 major endocrine populations,不过我们关心的是human pancreatic acinar and ductal cells的转录组差异分析结果哦!
大家可以任选其中一个数据集后,读取里面的单细胞转录组表达量矩阵文件后进行降维聚类分群哈,然后从里面挑选出来 acinar and ductal cells ,做一下差异分析。然后去跟前面的传统的bulk转录组测序数据差异分析结果去对比看看。
比如2021的文章:《A transcriptional cross species map of pancreatic islet cells》就归纳整理了3个物种的胰岛器官单细胞转录组数据,但是它的落脚点是4种不同的分泌细胞的差异,并不是我们想关心的胰腺的腺泡和导管细胞的转录水平差异,但是其项目数据里面肯定是有。
比如4例野生型小鼠急性炎症前后不同时间点的胰腺组织 :https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181276
传统的bulk转录组测序数据是可以量化转录组水平,其实也可以是表达量芯片技术,常见的芯片是affymetrix和illumina以及agilent公司出品的,使用human pancreatic acinar and ductal cells的关键词去搜索看看,找到了数据集就可以做简单的差异分析继续对比!
另外,可以重点关注一下: