前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >多AI Agent代理:使用LangGraph和LangChain创建多代理工作流

多AI Agent代理:使用LangGraph和LangChain创建多代理工作流

作者头像
山行AI
发布2024-06-06 15:51:17
1.1K0
发布2024-06-06 15:51:17
举报
文章被收录于专栏:山行AI

前言

在AI时代,每个人都是一个超级个体,AI Agent智能体的出现,为我们打造超级个体提供了可能。如果说2024年将是AI应用的元年,那么AI Agent将是这个AI应用元年里最为闪亮的那颗星。之前有读者留言,希望多分享一些AI Agent智能体的搭建方法,在上一篇推文中也从实战案例角度分享了怎么用天工AI快速搭建一套属于我们自己的AI Agent智能体,天工AI的多模态和AI搜索能力相信已经能满足大多数人的使用需求。今天就从代码实战上来分享如何使用LangGraph和LangChain创建多代理工作流。

自我反省

自我反省的AI代理使用一个生成器来产生输出,并用一个反射器来审查生成器的工作。生成器和反射器都使用相同的大型语言模型(LLM),但各自有不同的提示,从而形成了一个自我反省的AI代理。

这种在循环方式中以两种不同角色使用同一LLM的方法,是通过LangChain的LangGraph框架 facilitated 的。LangGraph 框架也可以用来创建多代理工作流。就像在自我反思的 AI 代理中一样,LLM 可以扮演多个角色,每个角色都充当一个不同的 AI 代理。这就是多代理的概念。

多代理

一个多代理系统涉及到将独立的行动者连接起来,每个行动者都由一个大型语言模型提供支持,按照特定的排列组合。

每个代理可以有自己的提示、LLM、工具和其他自定义代码来与其他代理协作。然而,同一个 LLM 也可以基于提供的提示扮演不同的角色。

使用LangGraph进行多代理工作流

LangGraph非常适合创建多代理工作流,因为它允许将两个或更多代理连接成一个图。每个代理都是一个独立的行动者,代理之间的连接由边缘表示。每个连接边缘都可以有一个控制条件,指导信息从一个代理流向另一个代理。每个代理都有一个状态,可以在每次流动过程中用信息更新。

协作多代理

就像人类合作一样,协作多代理工作流中的不同AI代理通过共享的留言板进行沟通。这使得每个代理都可以查看其他代理的工作并观察所有独立步骤。

这些不同的AI代理可能基于同一个大型语言模型,但扮演不同的角色。

我们现在将创建一个多代理工作流,用于生成过去五年马来西亚GDP的图表。此工作流要求研究人员在互联网上搜索并找出过去五年马来西亚GDP的数据,以及一个图表生成器,该生成器使用Python代码根据研究人员获得的数据生成图表。

因此,参与者包括:

1.研究人员 — 使用互联网搜索工具来研究问题。2.图表生成器 — 根据研究人员提供的数据执行代码创建图表。

图表蓝图

我们将构造一个图表蓝图,展示代理节点及其之间的连接。

图中的信息流动

A. 用户将输入发送给研究人员。

B. 研究人员将消息发送给路由器。

C. 根据消息的内容,路由器要么决定调用一个工具,要么发送消息给图表生成器。

D. 工具完成其工作并将输出发送给研究人员。研究人员可能再次调用该工具或发送消息给图表生成器。相应地,路由器调用工具或将消息发送给图表生成器。

E. 图表生成器将回复发送给路由器,路由器可能调用工具或将回复发送回研究人员。F. 最终,当研究者或图表生成器发送消息作为最终答案时,路由器将最终答案路由给用户。

现在,根据上述图表,让我们创建一个多代理工作流程。

安装包

首先,我们需要安装所有langchain包。

代码语言:javascript
复制
pip install langchain langchain_openai langgraph langchain_core langsmith langchain_experimental

我们还需要安装一些包用于存储数据(pandas)和创建图表(matplotlib)。

代码语言:javascript
复制
pip install pandas matplotlib

导入库

接下来,我们将导入创建多代理工作流所需的库。

代码语言:javascript
复制
import json

from langchain_core.messages import (
 AIMessage,
 BaseMessage,
 ChatMessage,
 FunctionMessage,
 HumanMessage,
)
from langchain.tools.render import format_tool_to_openai_function
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import END, StateGraph
from langgraph.prebuilt.tool_executor import ToolExecutor, ToolInvocation

创建工具

Tavily搜索工具

接下来,我们将设置工具。我们需要一个互联网搜索工具。我们将使用tavily来实现这一点。

代码语言:javascript
复制
import os
os.environ['TAVILY_API_KEY'] = "<Your Tavily API Key here>"

from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
tavily_tool = TavilySearchResults(max_results=5)

Python 工具

我们还需要一个工具来执行 Python 代码。我们将使用来自 langchain_experimental.utilities 的一个名为 PythonREPL 的工具。

代码语言:javascript
复制
from langchain_experimental.utilities import PythonREPL
from typing import Annotated

repl = PythonREPL()
@tool
def python_repl(code: Annotated[str, "The python code to execute to generate your chart."]):
 """Use this to execute python code. If you want to see the output of a value, you should print it out with `print(...)`. This is visible to the user."""
 try:
 result = repl.run(code)
 except BaseException as e:
 return f"Failed to execute. Error: {repr(e)}"
 return f"Succesfully executed:\\\\n`python\\\\\\\\n{code}\\\\\\\\n`\\\\nStdout: {result}"

我们将工具列入一个列表中。

代码语言:javascript
复制
tools = [tavily_tool, python_repl]

创建状态

接下来,我们将为状态创建对象。状态将是从一个节点传递到另一个节点的消息列表。

代码语言:javascript
复制
import operator
from typing import Annotated, List, Sequence, Tuple, TypedDict, Union

from langchain.agents import create_openai_functions_agent
from langchain.tools.render import format_tool_to_openai_function
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholderfrom langchain_openai import ChatOpenAI
from typing_extensions import TypedDict# This defines the object that is passed between each node

在图中。我们将为每个代理和工具创建不同的节点

代码语言:javascript
复制
class AgentState(TypedDict):
 messages: Annotated[Sequence[BaseMessage], operator.add]
 sender: str

创建工具节点

我们将根据消息的内容使用每个工具。我们将创建一个 tool_node 函数,该函数将根据消息执行一个工具。

代码语言:javascript
复制
tool_executor = ToolExecutor(tools)

def tool_node(state):
 """This runs tools in the graph It takes in an agent action and calls that tool and returns the result."""
 messages = state["messages"]
 # Based on the continue condition
 # we know the last message involves a function call
 last_message = messages[-1]
 # We construct an ToolInvocation from the function_call
 tool_input = json.loads(
 last_message.additional_kwargs["function_call"]["arguments"]
 )
 # We can pass single-arg inputs by value
 if len(tool_input) == 1 and "__arg1" in tool_input:
 tool_input = next(iter(tool_input.values()))
 tool_name = last_message.additional_kwargs["function_call"]["name"]
 action = ToolInvocation(
 tool=tool_name,
 tool_input=tool_input,
 )
 # We call the tool_executor and get back a response
 response = tool_executor.invoke(action)
 # We use the response to create a FunctionMessage
 function_message = FunctionMessage(
 content=f"{tool_name} response: {str(response)}", name=action.tool
 )
 # We return a list, because this will get added to the existing list
 return {"messages": [function_message]}

创建路由器

现在我们已经设置好了工具节点,接下来让我们创建一个路由器,它将根据来自状态的消息内容决定将信息发送到哪里。

任一代理都可以决定结束

代码语言:javascript
复制
def router(state):
 # This is the router
 messages = state["messages"]
 last_message = messages[-1]
 if "function_call" in last_message.additional_kwargs:
 # The previus agent is invoking a tool
 return "call_tool"
 if "FINAL ANSWER" in last_message.content:
 # Any agent decided the work is done
 return "end"
 return "continue"

接下来,我们要设置AI代理研究员和图表生成器。

创建LLM

首先,让我们创建llm。

代码语言:javascript
复制
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(api_key="<Your API Key here>")

创建代理

首先,我们创建一个 create_agent 函数,该函数将创建一个代理并追加函数提供的系统消息。我们稍后将使用此函数来创建研究员和图表生成器。

代码语言:javascript
复制
import json

from langchain_core.messages import (
 AIMessage,
 BaseMessage,
 ChatMessage,
 FunctionMessage,
 HumanMessage,
)
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import END, StateGraph
from langgraph.prebuilt.tool_executor import ToolExecutor, ToolInvocationdef create_agent(llm, tools, system_message: str):
 """Create an agent."""
 functions = [convert_to_openai_function(t) for t in tools] prompt = ChatPromptTemplate.from_messages(
 [
 (
 "system",
 "You are a helpful AI assistant, collaborating with other assistants."
 " Use the provided tools to progress towards answering the question."
 " If you are unable to fully answer, that's OK, another assistant with different tools "
 " will help where you left off. Execute what you can to make progress."
 " If you or any of the other assistants have the final answer or deliverable,"
 " prefix your response with FINAL ANSWER so the team knows to stop."
 " You have access to the following tools: {tool_names}.\\\\n{system_message}",
 ),
 MessagesPlaceholder(variable_name="messages"),
 ]
 )
 prompt = prompt.partial(system_message=system_message)
 prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools]))
 return prompt | llm.bind_functions(functions)

接下来,我们创建一个名为agent_node的函数,该函数负责添加消息和发送者的名称。这将用于路由目的。

创建给定代理的节点的辅助函数

代码语言:javascript
复制
def agent_node(state, agent, name):
 result = agent.invoke(state)
 # We convert the agent output into a format that is suitable to append to the global state
 if isinstance(result, FunctionMessage):
 pass
 else:
 result = HumanMessage(**result.dict(exclude={"type", "name"}), name=name)
 return {
 "messages": [result],
 # Since we have a strict workflow, we can
 # track the sender so we know who to pass to next.
 "sender": name,
 }

Now, we create the researcher agent and the chart generator agent.

research_agent= create_agent(
 llm,
 [tavily_tool],
 system_message="You should provide accurate data for the chart generator to use.",
)

chart_agent= create_agent(
 llm,
 [python_repl],
 system_message="Any charts you display will be visible by the user.",
)

从代理节点创建研究者节点和图表节点

然后,我们从 research_agent 和 chart_agent 函数创建 research_node 函数和 chart_node 函数。我们使用 functools 库从另一个函数 agent_node 创建函数。

代码语言:javascript
复制
import functools
research_node= functools.partial(agent_node, agent=research_agent, name="Researcher")

chart_node= functools.partial(agent_node, agent=chart_agent, name="Chart Generator")

创建图表

我们现在可以将所有节点放入名为workflow的图中,这包括research_node(研究节点)、chart_node(图表节点)和tool_node(工具节点)。我们还添加了条件边缘,这些边缘将根据满足的条件路由消息。最后,我们将研究者节点设置为入口点。因此,用户输入将首先进入研究者节点。最后,我们编译图表。

代码语言:javascript
复制
workflow= StateGraph(AgentState)

workflow.add_node("Researcher", research_node)
workflow.add_node("Chart Generator", chart_node)
workflow.add_node("call_tool", tool_node)workflow.add_conditional_edges(
 "Researcher",
 router,
 {"continue": "Chart Generator", "call_tool": "call_tool", "end": END},
)
workflow.add_conditional_edges(
 "Chart Generator",
 router,
 {"continue": "Researcher", "call_tool": "call_tool", "end": END},
)workflow.add_conditional_edges(
 "call_tool",#每个代理节点更新'sender'字段
#调用工具的节点不会更新,意味着
#这条边将回路到最初调用工具的代理节点
  lambda x: x["sender"],
{
    "Researcher": "Researcher",
    "Chart Generator": "Chart Generator",
},
)
workflow.set_entry_point("Researcher")
graph= workflow.compile()

调用多代理工作流程

我们现在准备好调用多代理工作流程了。

代码语言:javascript
复制
for s in graph.stream(
 {
 "messages": [
 HumanMessage(
 content="Fetch the Malaysia's GDP over the past 5 years,"
 " then draw a line graph of it."
 " Once you code it up, finish."
 )
 ],
 },
 # Maximum number of steps to take in the graph
 {"recursion_limit": 150},
):
 print(s)
 print("----")

输出为:

代码语言:javascript
复制
{'Researcher': {'messages': [HumanMessage(content='', additional_kwargs={'function_call': {'arguments': '{"query":"Malaysia GDP by year"}', 'name': 'tavily_search_results_json'}}, response_metadata={'token_usage': {'completion_tokens': 22, 'prompt_tokens': 221, 'total_tokens': 243}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'function_call', 'logprobs': None}, name='Researcher', id='run-313ac64c-fed0-4505-b00d-715c7ff0aa59-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}

{'call_tool': {'messages': [FunctionMessage(content="tavily_search_results_json response: [{'url': '<https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=MY>', 'content': 'GDP growth (annual %) - Malaysia from The World Bank: Data.'}, {'url': '<https://tradingeconomics.com/malaysia/gdp>', 'content': 'GDP in Malaysia averaged 109.79 USD Billion from 1960 until 2022, reaching an all time high of 407.03 USD Billion in 2022 and a record low of 1.90 USD Billion\\\\xa0...'}, {'url': '<https://www.macrotrends.net/global-metrics/countries/MYS/malaysia/gdp-gross-domestic-product>', 'content': 'Malaysia gdp for 2019 was $365.18B, a 1.78% increase from 2018. Download Historical Data Save as Image\\\\xa0...'}, {'url': '<https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=MY>', 'content': '1960 1980 2000 2020 0.00 225b 450b Malaysia. 1960 - 2022. 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007\\\\xa0...'}, {'url': '<https://www.worldometers.info/gdp/malaysia-gdp/>', 'content': 'Nominal (current) Gross Domestic Product (GDP) of Malaysia is $406,306,000,000 (USD) as of 2022. · Real GDP (constant, inflation adjusted) of Malaysia reached\\\\xa0...'}]", name='tavily_search_results_json')]}}

{'Researcher': {'messages': [HumanMessage(content='', additional_kwargs={'function_call': {'arguments': '{"query":"Malaysia GDP historical data"}', 'name': 'tavily_search_results_json'}}, response_metadata={'token_usage': {'completion_tokens': 22, 'prompt_tokens': 632, 'total_tokens': 654}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'function_call', 'logprobs': None}, name='Researcher', id='run-442c7d99-8b3c-4a32-99ec-e0739ac059dd-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}

{'call_tool': {'messages': [FunctionMessage(content='tavily_search_results_json response: [{\\'url\\': \\'<https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=MY&view=chart\\>', \\'content\\': \\'GDP growth (annual %) - Malaysia. World Bank national accounts data, and OECD National Accounts data files. License : CC BY-4.0. LineBarMap. Also Show Share Details. Label. 1961 - 2022.\\'}, {\\'url\\': \\'<https://tradingeconomics.com/malaysia/gdp\\>', \\'content\\': \\'The Gross Domestic Product (GDP) in Malaysia was worth 407.03 billion US dollars in 2022, according to official data from the World Bank. The GDP value of Malaysia represents 0.17 percent of the world economy. This page provides - Malaysia GDP - actual values, historical data, forecast, chart, statistics, economic calendar and news.\\'}, {\\'url\\': \\'<https://www.macrotrends.net/global-metrics/countries/MYS/malaysia/gdp-growth-rate\\>', \\'content\\': \\'Malaysia gdp growth rate for 2022 was 8.65%, a 5.35% increase from 2021. Malaysia gdp growth rate for 2021 was 3.30%, a 8.75% increase from 2020. Malaysia gdp growth rate for 2020 was -5.46%, a 9.87% decline from 2019. Malaysia gdp growth rate for 2019 was 4.41%, a 0.43% decline from 2018. Download Historical Data. Save as Image.\\'}, {\\'url\\': \\'<https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=MY&view=chart\\>', \\'content\\': \\'All Countries and Economies. Country. Most Recent Year. Most Recent Value(Millions) GDP (current US$) - Malaysia from The World Bank: Data.\\'}, {\\'url\\': \\'<https://www.macrotrends.net/global-metrics/countries/MYS/malaysia/gdp-gross-domestic-product\\>', \\'content\\': "Malaysia gdp for 2022 was $407.03B, a 8.88% increase from 2021. Malaysia gdp for 2021 was $373.83B, a 10.78% increase from 2020. Malaysia gdp for 2020 was $337.46B, a 7.59% decline from 2019. Malaysia gdp for 2019 was $365.18B, a 1.78% increase from 2018. GDP at purchaser\\'s prices is the sum of gross value added by all resident producers in the ..."}]', name='tavily_search_results_json')]}}

{'Researcher': {'messages': [HumanMessage(content="Based on the search results, I found the GDP data for Malaysia for the past 5 years as follows:\\n\\n- 2018: $365.18 billion\\n- 2019: $337.46 billion\\n- 2020: $373.83 billion\\n- 2021: $407.03 billion\\n- 2022: $407.03 billion\\n\\nNow, I will proceed to create a line graph to visualize this data.\\nI will now generate a line graph to visualize Malaysia's GDP over the past 5 years.", response_metadata={'token_usage': {'completion_tokens': 113, 'prompt_tokens': 1210, 'total_tokens': 1323}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-e498d73b-c688-4e38-aa9b-b4cfa39c34c7-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}

{'Chart Generator': {'messages': [HumanMessage(content='', additional_kwargs={'function_call': {'arguments': '{"code":"import matplotlib.pyplot as plt\\\\n\\\\ndata = {\\\\n \\'Year\\': [2018, 2019, 2020, 2021, 2022],\\\\n \\'GDP (in billion USD)\\': [365.18, 337.46, 373.83, 407.03, 407.03]\\\\n}\\\\n\\\\nplt.figure(figsize=(10, 6))\\\\nplt.plot(data[\\'Year\\'], data[\\'GDP (in billion USD)\\'], marker=\\'o\\', color=\\'b\\', linestyle=\\'-\\', linewidth=2)\\\\nplt.title(\\'Malaysia GDP Over the Past 5 Years\\')\\\\nplt.xlabel(\\'Year\\')\\\\nplt.ylabel(\\'GDP (in billion USD)\\')\\\\nplt.grid(True)\\\\nplt.show()"}', 'name': 'python_repl'}}, response_metadata={'token_usage': {'completion_tokens': 175, 'prompt_tokens': 1338, 'total_tokens': 1513}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'function_call', 'logprobs': None}, name='Chart Generator', id='run-11c4756f-097b-4733-8ecf-6091f5be5bd4-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}

{'call_tool': {'messages': [FunctionMessage(content="python_repl response: Succesfully executed:\\\\n`python\\\\\\\\nimport matplotlib.pyplot as plt\\n\\ndata = {\\n 'Year': [2018, 2019, 2020, 2021, 2022],\\n 'GDP (in billion USD)': [365.18, 337.46, 373.83, 407.03, 407.03]\\n}\\n\\nplt.figure(figsize=(10, 6))\\nplt.plot(data['Year'], data['GDP (in billion USD)'], marker='o', color='b', linestyle='-', linewidth=2)\\nplt.title('Malaysia GDP Over the Past 5 Years')\\nplt.xlabel('Year')\\nplt.ylabel('GDP (in billion USD)')\\nplt.grid(True)\\nplt.show()\\\\\\\\n`\\\\nStdout: ", name='python_repl')]}}

{'Chart Generator': {'messages': [HumanMessage(content="The line graph showing Malaysia's GDP over the past 5 years has been successfully generated. The graph displays the GDP (in billion USD) on the y-axis and the years from 2018 to 2022 on the x-axis. The GDP values are plotted as points connected by lines.\\n\\nIs there anything else you would like to analyze or any other assistance needed?", response_metadata={'token_usage': {'completion_tokens': 75, 'prompt_tokens': 1514, 'total_tokens': 1589}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-a6d15c89-6cb8-4f98-9cbb-67bb92214dc5-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}

{'Researcher': {'messages': [HumanMessage(content="I have successfully generated the line graph showing Malaysia's GDP over the past 5 years. If you have any more data to analyze or need further assistance, feel free to let me know!", response_metadata={'token_usage': {'completion_tokens': 39, 'prompt_tokens': 1579, 'total_tokens': 1618}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-9c1709e6-f6ee-4a8c-b0ae-f363d65a5a2f-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}

{'Chart Generator': {'messages': [HumanMessage(content="Great! If you have any more data to analyze or any other tasks you'd like assistance with, feel free to ask. I'm here to help!", response_metadata={'token_usage': {'completion_tokens': 32, 'prompt_tokens': 1634, 'total_tokens': 1666}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-1f869abb-930c-4b19-ab7e-c068a407f134-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}

{'Researcher': {'messages': [HumanMessage(content="I'm glad the line graph for Malaysia's GDP over the past 5 years was successfully generated. If you have any more data to analyze or any other tasks you'd like assistance with, feel free to ask. I'm here to help!", response_metadata={'token_usage': {'completion_tokens': 50, 'prompt_tokens': 1656, 'total_tokens': 1706}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-4c614614-5fc6-4d6b-abd8-5b1b85607f5a-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}

{'Chart Generator': {'messages': [HumanMessage(content='Thank you! If you have any more data to analyze or if you need assistance with any other tasks in the future, feel free to reach out. Have a great day!', response_metadata={'token_usage': {'completion_tokens': 36, 'prompt_tokens': 1722, 'total_tokens': 1758}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-659e7259-1906-4c07-8bb5-53c8d6ac7dd2-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}

{'Researcher': {'messages': [HumanMessage(content='Thank you! If you have any more data to analyze or if you need assistance with any other tasks in the future, feel free to reach out. Have a great day!', response_metadata={'token_usage': {'completion_tokens': 36, 'prompt_tokens': 1748, 'total_tokens': 1784}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-f87114d6-08aa-4a54-8490-1a1145a30263-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}

{'Chart Generator': {'messages': [HumanMessage(content='Great collaboration! If you have any more questions or need assistance in the future, feel free to ask. Have a wonderful day!', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 1800, 'total_tokens': 1827}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-b12ec2b6-61bb-485c-81cf-279ade302e02-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}

{'Researcher': {'messages': [HumanMessage(content="Thank you! It was a pleasure collaborating with you. If you have any more questions or need assistance in the future, don't hesitate to ask. Have a wonderful day!", response_metadata={'token_usage': {'completion_tokens': 36, 'prompt_tokens': 1817, 'total_tokens': 1853}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-3c7cf207-ce49-416f-bb02-81a2a3410d5a-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}

{'Chart Generator': {'messages': [HumanMessage(content='It was a pleasure collaborating with you! If you have any more questions or need assistance in the future, feel free to reach out. Have a great day!', response_metadata={'token_usage': {'completion_tokens': 33, 'prompt_tokens': 1869, 'total_tokens': 1902}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-1d5d0ed0-c20a-4745-a16f-6adcaa8c2c81-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}

{'Researcher': {'messages': [HumanMessage(content='Likewise! If you ever have more questions or need help in the future, feel free to ask. Have a fantastic day!', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 1892, 'total_tokens': 1919}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-bb88218f-ab2f-4ee5-b381-d75e1bd1d1cf-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}

{'Chart Generator': {'messages': [HumanMessage(content='Likewise! If you ever have more questions or need help in the future, feel free to ask. Have a fantastic day!', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 1935, 'total_tokens': 1962}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-50293d69-34ff-455d-8b34-3a20a0a1bb91-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}

{'Researcher': {'messages': [HumanMessage(content="I'm glad we were able to collaborate effectively! If you have any more questions or need assistance in the future, feel free to reach out. Have a wonderful day!", response_metadata={'token_usage': {'completion_tokens': 35, 'prompt_tokens': 1952, 'total_tokens': 1987}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-67208ed1-0d31-4b43-b2e8-92619b806deb-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}

{'Researcher': {'messages': [HumanMessage(content="Thank you! It was a pleasure collaborating with you. If you have any more questions or need assistance in the future, don't hesitate to ask. Have a wonderful day!", response_metadata={'token_usage': {'completion_tokens': 36, 'prompt_tokens': 2087, 'total_tokens': 2123}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-bc8186f2-1f7e-477e-b1ff-0020c7171aa3-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}

{'Chart Generator': {'messages': [HumanMessage(content='FINAL ANSWER', response_metadata={'token_usage': {'completion_tokens': 4, 'prompt_tokens': 2139, 'total_tokens': 2143}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-45177a17-7ae8-43b0-b73e-f9d3d5c5d456-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}

恭喜您!您已经创建了一个多代理工作流。现在,您正朝着创建多个AI代理共同完成复杂任务的方向前进。

声明

本文由山行翻译整理自:https://vijaykumarkartha.medium.com/multiple-ai-agents-creating-multi-agent-workflows-using-langgraph-and-langchain-0587406ec4e6,如果对您有帮助,请帮忙点赞、关注、收藏,谢谢~

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-05-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 山行AI 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 自我反省
  • 多代理
  • 使用LangGraph进行多代理工作流
  • 协作多代理
  • 图表蓝图
  • 图中的信息流动
  • 安装包
  • 导入库
  • 创建工具
  • Tavily搜索工具
  • Python 工具
  • 创建状态
  • 在图中。我们将为每个代理和工具创建不同的节点
  • 创建工具节点
  • 创建路由器
  • 任一代理都可以决定结束
  • 创建LLM
  • 创建代理
  • 创建给定代理的节点的辅助函数
  • 从代理节点创建研究者节点和图表节点
  • 创建图表
  • 调用多代理工作流程
  • 声明
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档