前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Swoole 源码分析之 epoll 多路复用模块

Swoole 源码分析之 epoll 多路复用模块

原创
作者头像
码农先森
发布2024-06-25 22:44:02
760
发布2024-06-25 22:44:02
举报
文章被收录于专栏:Swoole源码分析

大家好,我是码农先森。

引言

在传统的IO模型中,每个IO操作都需要创建一个单独的线程或进程来处理,这样的操作会导致系统资源的大量消耗和管理开销。

而IO多路复用技术通过使用少量的线程或进程同时监视多个IO事件,能够更高效地处理大量的IO操作,从而提高系统的性能和资源利用率。

在IO多路复用的技术中尤其突出的是 epoll 技术,它是解决 C10K 问题的利器。

Swoole 中的多路复用

多路复用技术可以说是贯穿了整个 Swoole,同时也是 Swoole 为什么是高性能通信框架的根本原因。

Swoole 最重要的协程模块就是利用的 IO 多路复用事件循环技术,这也是与 Go 语言中协程不同的本质原因。

下面我们来一起看下 Swoole 中是如何实现 epoll 多路复用技术的。

这是创建 eoll 实例的方法,其中的 Reactor 是一个线程对象。

代码语言:php
复制
// 创建一个 epoll 实例,为其分配事件数组,并设置相关的 reactor 对象属性
// swoole-src/src/reactor/epoll.cc:71
ReactorEpoll::ReactorEpoll(Reactor *_reactor, int max_events) : ReactorImpl(_reactor) {
    // 创建一个 epoll 实例
    epfd_ = epoll_create(512);
    // 检查 epoll 创建是否成功
    if (!ready()) {
        swoole_sys_warning("epoll_create failed");
        return;
    }

    // epoll_event 结构体数组分配内存
    // 用于存储注册到 epoll 实例上的事件
    events_ = new struct epoll_event[max_events];
    // 设置最大事件数量
    reactor_->max_event_num = max_events;
    // native_handle 设置为 epoll 实例
    reactor_->native_handle = epfd_;
}

这个方法是向 epoll 事件循环中添加一个客户端的连接对象,用于监听。

代码语言:php
复制
// 向 epoll 事件循环中添加一个 socket,并为其设置特定的事件监听
// swoole-src/src/reactor/epoll.cc:94
int ReactorEpoll::add(Socket *socket, int events) {
    // 定义 epoll_event 结构体实例 e
    struct epoll_event e;
    // 设置事件类型
    e.events = get_events(events);
    // 设置 socket 指针,在 epoll 触发事件时,可以找到对应的 socket
    e.data.ptr = socket;

    // 添加事件到 epoll
    if (epoll_ctl(epfd_, EPOLL_CTL_ADD, socket->fd, &e) < 0) {
        swoole_sys_warning(
            "failed to add events[fd=%d#%d, type=%d, events=%d]", socket->fd, reactor_->id, socket->fd_type, events);
        return SW_ERR;
    }

    // 在 Reactor 中添加 socket
    // 为了在 Reactor 内部进行管理和跟踪
    reactor_->_add(socket, events);
    swoole_trace_log(
        SW_TRACE_EVENT, "add events[fd=%d#%d, type=%d, events=%d]", socket->fd, reactor_->id, socket->fd_type, events);

    return SW_OK;
}

这个方法是从 epoll 事件循环中移除一个客户端连接对象。

代码语言:php
复制
// 从 epoll 事件循环中删除一个 socket
// swoole-src/src/reactor/epoll.cc:113
int ReactorEpoll::del(Socket *_socket) {
    // 检查 socket 是否已被移除
    if (_socket->removed) {
        swoole_error_log(SW_LOG_WARNING,
                         SW_ERROR_EVENT_SOCKET_REMOVED,
                         "failed to delete events[fd=%d, fd_type=%d], it has already been removed",
                         _socket->fd, _socket->fd_type);
        return SW_ERR;
    }
    
    // 使用 epoll_ctl 函数从 epoll 的文件描述符 epfd_ 中删除 socket
    if (epoll_ctl(epfd_, EPOLL_CTL_DEL, _socket->fd, nullptr) < 0) {
        after_removal_failure(_socket);
        if (errno != EBADF && errno != ENOENT) {
            return SW_ERR;
        }
    }

    swoole_trace_log(SW_TRACE_REACTOR, "remove event[reactor_id=%d|fd=%d]", reactor_->id, _socket->fd);
    // 从 Reactor 中删除该 socket
    reactor_->_del(_socket);

    return SW_OK;
}

这个方法是用于修改一个已经在 epoll 事件循环中的客户端连接对象。

代码语言:php
复制
// 修改一个已经存在于 epoll 事件循环中的 socket 的事件监听类型
// swoole-src/src/reactor/epoll.cc:134
int ReactorEpoll::set(Socket *socket, int events) {
    // 定义 epoll_event 结构体实例 e
    struct epoll_event e;
    // 设置事件类型
    e.events = get_events(events);
    // 设置 socket 指针,在 epoll 触发事件时,可以找到对应的 socket
    e.data.ptr = socket;

    // 使用 epoll_ctl 函数修改 epoll 文件描述符 epfd_ 中对应 socket 的事件
    int ret = epoll_ctl(epfd_, EPOLL_CTL_MOD, socket->fd, &e);
    if (ret < 0) {
        swoole_sys_warning(
            "failed to set events[fd=%d#%d, type=%d, events=%d]", socket->fd, reactor_->id, socket->fd_type, events);
        return SW_ERR;
    }

    swoole_trace_log(SW_TRACE_EVENT, "set event[reactor_id=%d, fd=%d, events=%d]", reactor_->id, socket->fd, events);
    // 在 Reactor 内部进行相应的设置
    reactor_->_set(socket, events);

    return SW_OK;
}

这个方法是 epoll 事件循环环节中最重要的一点,开始等待 Socket IO事件的触发,并且调用对应的处理函数。

代码语言:php
复制
// swoole-src/src/reactor/epoll.cc:153
int ReactorEpoll::wait(struct timeval *timeo) {
    // 声明事件对象 event、Reactor 处理对象 handler
    Event event;
    ReactorHandler handler;
    int i, n, ret;

    // reactor 对象 ID 和 最大事件数量
    int reactor_id = reactor_->id;
    int max_event_num = reactor_->max_event_num;

    // 用于设置超时时间,如果 timeout_msec 为 0,则根据传入的 timeo 参数设置超时时间
    if (reactor_->timeout_msec == 0) {
        if (timeo == nullptr) {
            reactor_->timeout_msec = -1;
        } else {
            reactor_->timeout_msec = timeo->tv_sec * 1000 + timeo->tv_usec / 1000;
        }
    }
	
	// 在进入事件循环之前调用 before_wait 方法,表示准备开始等待事件
    reactor_->before_wait();

    while (reactor_->running) {
        // 如果定义了 onBegin 回调函数,则调用它来执行相应的操作
        if (reactor_->onBegin != nullptr) {
            reactor_->onBegin(reactor_);
        }

        // 调用 epoll_wait 函数获取就绪事件的数量
        n = epoll_wait(epfd_, events_, max_event_num, reactor_->get_timeout_msec());
        if (n < 0) {
            // 如果出现错误且不捕获错误,则打印错误信息并返回错误码
            if (!reactor_->catch_error()) {
                swoole_sys_warning("[Reactor#%d] epoll_wait failed", reactor_id);
                return SW_ERR;
            } else {
                goto _continue;
            }
        } else if (n == 0) {
            // 如果返回的就绪事件数为 0,则执行结束回调函数并继续下一轮循环。
            reactor_->execute_end_callbacks(true);
            SW_REACTOR_CONTINUE;
        }
        
        for (i = 0; i < n; i++) {
            // 在处理每个就绪事件时,将事件相关信息保存在event对象中
            event.reactor_id = reactor_id;
            event.socket = (Socket *) events_[i].data.ptr;
            event.type = event.socket->fd_type;
            event.fd = event.socket->fd;

            // 如果事件类型是 EPOLLRDHUP、EPOLLERR 或 EPOLLHUP 之一,则设置 event_hup 标志为 1。
            if (events_[i].events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP)) {
                event.socket->event_hup = 1;
            }

            // 检查是否存在可读事件且套接字未被移除
            // read 如果是可读事件(EPOLLIN),则调用相应的读事件处理器
            if ((events_[i].events & EPOLLIN) && !event.socket->removed) {
                handler = reactor_->get_handler(SW_EVENT_READ, event.type);
                ret = handler(reactor_, &event);
                if (ret < 0) {
                    swoole_sys_warning("EPOLLIN handle failed. fd=%d", event.fd);
                }
            }
            
            // 检查是否存在可写事件且套接字未被移除
            // write 如果是可写事件(EPOLLOUT),则调用相应的写事件处理器。
            if ((events_[i].events & EPOLLOUT) && !event.socket->removed) {
                handler = reactor_->get_handler(SW_EVENT_WRITE, event.type);
                ret = handler(reactor_, &event);
                if (ret < 0) {
                    swoole_sys_warning("EPOLLOUT handle failed. fd=%d", event.fd);
                }
            }

            // error 如果是错误事件(EPOLLRDHUP、EPOLLERR、EPOLLHUP),则调用相应的错误事件处理器。
            if ((events_[i].events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP)) && !event.socket->removed) {
                // ignore ERR and HUP, because event is already processed at IN and OUT handler.
                if ((events_[i].events & EPOLLIN) || (events_[i].events & EPOLLOUT)) {
                    continue;
                }
                handler = reactor_->get_error_handler(event.type);
                ret = handler(reactor_, &event);
                if (ret < 0) {
                    swoole_sys_warning("EPOLLERR handle failed. fd=%d", event.fd);
                }
            }

            // 在处理完事件后,检查是否需要执行一次性事件的删除操作
            if (!event.socket->removed && (event.socket->events & SW_EVENT_ONCE)) {
                reactor_->_del(event.socket);
            }
        }

    _continue:
        // 在事件循环中执行回调函数并继续下一轮循环
        reactor_->execute_end_callbacks(false);
        SW_REACTOR_CONTINUE;
    }
    return 0;
}

总结

  1. epoll 在内部使用了红黑树的数据结构,红黑树是一个高效的数据结构。
  2. epoll 是解决 C10K 问题的利器,不仅是在 Swoole 中被应用,在很多的高性能服务中也有应用,例如:Nginx 服务等。
  3. Swoole 被称为高性能通信框架的关键原因,就是采用了 epoll 多路复用技术。

欢迎关注、分享、点赞、收藏、在看,我是微信公众号「码农先森」作者。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 引言
  • Swoole 中的多路复用
  • 总结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档