首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >SIGIR 2024 | 美团技术团队精选论文解读

SIGIR 2024 | 美团技术团队精选论文解读

作者头像
美团技术团队
发布于 2024-06-28 08:29:25
发布于 2024-06-28 08:29:25
6330
举报
文章被收录于专栏:美团技术团队美团技术团队
总第594篇 | 2024年第014篇

本文精选了美团技术团队被SIGIR 2024收录的3篇论文进行解读,第一篇论文围绕如何利用深度学习,来整合广告拍卖和混排;第二篇论文扩展定义了全用户纵向联邦推荐范式,并首次提出基于检索增强的纵向联邦推荐框架ReFer,解决了跨域特征缺失问题;第三篇论文提出了一种新颖的框架——解耦对比超图学习,并应用于下一个兴趣点推荐任务中。这些论文有美团技术团队的独立产出,也有跟高校、科研机构合作的成果。希望能给从事相关研究工作的同学带来一些帮助或启发。

SIGIR的全称为ACM Special Interest Group on Information Retrieval(ACM国际信息检索大会),是中国计算机学会CCF推荐的A类国际学术会议,也是人工智能领域智能信息检索方向最权威的国际会议。根据会议官方统计,这次会议共收到1148篇长文投稿,其中有791篇有效长文投稿,仅有159篇长文被录用,录用率为20.1%。

7月11日(周四)14:00 - 16:00,我们将邀请3位论文作者进行线上分享,文末有详细介绍,欢迎点击这里报名~

01、Deep Automated Mechanism Design for Integrating Ad Auction and Allocation in Feed

融合信息流广告拍卖与混排的深度自动机制设计

论文作者:Xuejian Li*(Meituan),Ze Wang*(Meituan),Bingqi Zhu(Meituan),Fei He(Meituan),Yongkang Wang(Meituan),Xingxing Wang(Meituan)

备注:*为共同一作。

论文类型:Long Paper

论文下载PDF

论文简介:电子商务平台通常展示一个包含自然结果和广告的有序列表来响应用户的页面请求。这个列表是广告拍卖和混排的结果,直接影响平台的广告收入和总交易额(GMV),其中广告拍卖决定展示哪个广告及其计费,混排决定广告和自然结果的展示顺序。主流做法将广告拍卖和混排分为两个独立阶段,但这存在两个问题导致次优的结果:1)广告拍卖没有考虑外部性,例如实际展示位置和上下文对广告点击率(CTR)的影响;2)混排利用拍卖获胜广告的计费动态决定展示位置,未能维持广告机制的激励兼容性(IC)。

因此,本文提出了一个深度自动机制,整合了广告拍卖和混排,确保在考虑外部性的情况下实现IC和个体理性(IR),同时最大化广告收入和GMV。该机制将候选广告和自然结果的有序列表作为输入,对于每个候选广告,在自然结果有序列表的不同位置插入广告,生成所有候选分配。对于每个候选分配,页面级别模型将整个分配作为输入,输出每个广告和自然结果的预测结果,以建模全局外部性。最后,基于深度神经网络建模的自动拍卖机制选择最优分配并确定计费。该机制同时决定了广告的排名、计费和展示位置,在离线实验和在线A/B测试中,产生的广告收入和GMV高于最先进的基线。

02、ReFer: Retrieval-Enhanced Vertical Federated Recommendation for Full Set User Benefit

ReFer: 一种面向全用户增益的检索增强式纵向联邦推荐框架

论文作者:Wenjie Li(Tsinghua), Zhongren Wang(Tsinghua),Jinpeng Wang(Tsinghua), Shu-Tao Xia(Tsinghua),Jile Zhu(Meituan),Mingjian Chen(Meituan),Jiangke Fan(Meituan),Jia Cheng(Meituan), Jun Lei(Meituan)

论文类型:Research Track Full Paper

论文下载PDF

论文简介:随着跨企业数据流通的需求增长、和数据隐私保护监管日益严格,纵向联邦学习(Vertical Federated Learning,VFL)这一隐私机器学习技术被更多地应用于推荐系统中。然而传统联邦方案忽略了大量非交叉用户数据,不仅降低了训练过程中用户兴趣信息的丰富度,还导致模型只能对数量有限的交叉用户进行预测,极大降低了商业落地的性价比。

为解决这一问题,本论文扩展定义了全用户纵向联邦推荐范式(Fully Vertical Federated Recommendation,FullyVFR),并首次提出基于检索增强的纵向联邦推荐框架ReFer。该框架提出了一种通用的二阶段分布式检索方案及其配套的分布式注意力融合机制,解决了跨域特征缺失问题,缓解了跨用户群的兴趣偏差,显著提高了全体用户在联邦模型上的性能增益。在公共数据集和美团业务数据集上的实验结果均显示,ReFer能在多个任务场景下提升全体用户群的推荐性能。

03、Disentangled Contrastive Hypergraph Learning for Next POI Recommendation

解耦对比超图学习用于下一兴趣点推荐

论文作者:Yantong Lai (IIE CAS; UCAS),Yijun Su(IIE CAS),Lingwei Wei(IIE CAS), Tianqi He(Meituan), Haitao Wang(Meituan),Gaode Chen(IIE CAS; UCAS),Daren Zha(IIE CAS),Qiang Liu(Meituan),Xingxing Wang(Meituan)

备注:IIE CAS全称为Institute of Information Engineering, Chinese Academy of Sciences;UCAS全称为University of Chinese Academy of Sciences

论文类型:Research Track Full Paper

论文下载PDF

论文简介:下一个兴趣点(POI)推荐是一项重要且流行的任务,旨在为用户提供下一个感兴趣的位置建议。现有的大多数基于序列和图神经网络的方法已探索了多种途径来建模用户的访问行为,并取得了较好的性能。然而,目前仍有两个关键问题尚未得到充分关注:1) 大多数先前的研究忽视了用户偏好会受不同且不断变化的多方面决策因子影响,导致学到的用户表征耦合且次优;2) 许多现有方法未能充分建模不同用户决策因子之间的重要协同关联,阻碍了捕捉因子间互补推荐增强的能力。

为了解决这些挑战,本文提出了一种新颖的框架——解耦对比超图学习(DCHL),并应用于下一个兴趣点推荐任务中。具体而言,本文设计了一个多视图解耦超图学习组件,分别从协同、转移和地理视图解耦建模用户-POI交互行为,并针对性设计各视图感知的超图卷积网络学习解耦的POI表征。另外,本文提出了一个自适应融合方法来自动融合多视图用户表征,并采用了跨视图对比学习方法捕捉视图间的协同关联,实现用户表征和POI表征的表示增强。最后,本文在三个真实世界数据集上进行了充分实验,验证了所提方法相较多类别先进基线方法的优越性。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-06-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 美团技术团队 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
ACM SIGIR 2022 | 美团技术团队精选论文解读
总第524篇 2022年 第041篇 今年,美团技术团队有多篇论文被ACM SIGIR 2022收录,这些论文涵盖了观点标签生成、跨域情感分类、对话摘要领域迁移、跨域检索、点击率预估、对话主题分割等多个技术领域。本文精选了10篇论文做简要介绍(附下载链接),希望能对从事相关研究的同学有所帮助或启发。 SIGIR是信息检索方向的国际顶级会议(CCF-A类)。第 45 届国际信息检索大会(The 45th International ACM SIGIR Conference on Research and D
美团技术团队
2022/07/26
1.2K0
ACM SIGIR 2022 | 美团技术团队精选论文解读
KDD 2023 | 美团技术团队精选论文解读
本文精选了美团技术团队被KDD 2023收录的7篇论文进行解读,论文覆盖了Feed流推荐、多模态数据、实例分割、用户意图预测等多个方向。这些论文也是美团技术团队与国内多所高校、科研机构合作的成果。希望给从事相关研究工作的同学带来一些启发或者帮助。
美团技术团队
2023/09/05
1.2K0
KDD 2023 | 美团技术团队精选论文解读
ICDE'22 推荐系统论文之Research篇
https://icde2022.ieeecomputer.my/accepted-research-track/
枫桦
2022/12/17
1K0
ICDE'22 推荐系统论文之Research篇
CVPR 2023 | 美团技术团队精选论文解读
本文精选了美团技术团队被CVPR 2023收录的8篇论文进行解读。这些论文既有自监督学习、领域自适应、联邦学习等通用学习范式方面的技术迭代,也涉及目标检测、跟踪、分割、Low-level Vision等典型视觉任务的性能,体现了美团在基础通用技术和垂直领域技术上的全方位创新。这些论文也是美团技术团队与国内多所高校、科研机构合作的成果。希望给从事相关研究工作的同学带来一些启发或者帮助。
美团技术团队
2023/09/05
1.1K0
CVPR 2023 | 美团技术团队精选论文解读
KDD 2022 | 美团技术团队精选论文解读
总第529篇 2022年 第046篇 今年,美团技术团队有多篇论文被KDD 2022收录,这些论文涵盖了图谱预训练、选择算法、意图自动发现、效果建模、策略学习、概率预测、奖励框架等多个技术领域。本文精选了7篇论文做简要介绍(附下载链接,论文排名不分先后),希望能对从事相关研究方向的同学有所帮助或启发。 论文01:Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries(支持知识推理的图谱预训
美团技术团队
2022/08/26
1.8K0
KDD 2022 | 美团技术团队精选论文解读
SIGIR'22 推荐系统论文之图网络篇
SIGIR 2022已公布录用论文,投稿长文794篇/短文667篇,录用长文161篇/短文165篇,录用率长文20%/短文24.7%,完整录用论文列表见https://sigir.org/sigir2022/program/accepted/。
枫桦
2022/08/02
1.7K0
SIGIR'22 推荐系统论文之图网络篇
图技术在美团外卖下的场景化应用及探索
总第534篇 2022年 第051篇 在外卖广告CTR预估建模中,我们依托图技术在场景化上进行了一系列探索。本文首先介绍了使用图网络技术的出发点,然后从特征层面的抽象图关系到子图扩展以及场景感知子图,逐步介绍如何使用图技术建模业务问题,并针对联合训练的线上服务细节及效果进行解释和分析,希望能给从事相关工作的同学带来一些帮助或启发。 1. 引言 1.1 问题与挑战 1.2 图技术介绍 2. 图技术的场景化探索 2.1 基于特征图的场景特征交叉建模 2.2 基于子图扩展的行为图建模 2.3 基于元路径的场景图
美团技术团队
2022/09/13
1.3K0
图技术在美团外卖下的场景化应用及探索
CVPR 2022 | 美团技术团队精选论文解读
总第519篇 2022年 第036篇 计算机视觉国际顶会CVPR 2022近日在美国新奥尔良召开,今年美团技术团队有多篇论文被CVPR 2022收录,这些论文涵盖了模型压缩、视频目标分割、3D视觉定位、图像描述、模型安全、跨模态视频内容检索等研究领域。 本文将对6篇精选的论文做简要的介绍(附下载链接),希望能对从事相关研究的同学有所帮助或启发。 Paper 01 | Compressing Models with Few Samples: Mimicking then Replacing Paper 02
美团技术团队
2022/06/27
1.1K0
CVPR 2022 | 美团技术团队精选论文解读
SIGIR 2022 | 推荐系统相关论文分类整理
ACM SIGIR 2022是CCF A类会议,人工智能领域智能信息检索( Information Retrieval,IR)方向最权威的国际会议。会议专注于信息的存储、检索和传播等各个方面,包括研究战略、输出方案和系统评估等等。第45届国际计算机学会信息检索大会(The 45rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2022)计划于今年7月11日-7月15日在西班牙马德里召开。这次会议共收到794篇长文和667篇短文投稿,有161篇长文和165篇短文被录用,录用率约为20%和24.7%。官方发布的接收论文列表:
对白
2022/05/17
1.8K1
SIGIR 2022 | 推荐系统相关论文分类整理
ACL 2021 | 一文详解美团技术团队7篇精选论文
ACL是计算语言学和自然语言处理领域最重要的顶级国际会议,该会议由国际计算语言学协会组织,每年举办一次。据谷歌学术计算语言学刊物指标显示,ACL影响力位列第一,是CCF-A类推荐会议。美团技术团队共有7篇论文(其中6篇长文,1篇短文)被ACL 2021接收,这些论文是美团技术团队在事件抽取、实体识别、意图识别、新槽位发现、无监督句子表示、语义解析、文档检索等自然语言处理任务上的一些前沿探索及应用。
美团技术团队
2021/08/26
1.2K0
WWW'22 推荐系统论文之序列推荐篇
WWW 2022已公布录用论文,接收323篇/投稿1822篇,录用率为17.7%,完整录用论文列表见https://www2022.thewebconf.org/accepted-papers/
枫桦
2022/08/02
1.6K0
SIGIR2023推荐系统论文集锦
第46届SIGIR2023会议(ACM国际信息检索大会),将于2023年7月23日-7月27日在中国台湾台北召开。SIGIR是中国计算机学会CCF推荐的A类国际学术会议,也是人工智能领域智能信息检索方向最权威的国际会议。这次会议共收到822篇长文投稿,仅有165篇长文被录用,长文录用率约20.1%。另外,共收到短文613篇,仅154篇录用,短文接收率为25.12%。
张小磊
2023/08/22
1.3K0
SIGIR2023推荐系统论文集锦
WSDM 2023 推荐系统相关论文整理
WSDM 2023的论文录用结果已出,以下是论文列表地址,笔者整理了推荐系统相关的一些论文,包含序列推荐,点击率估计,多样性等领域,涵盖图学习,对比学习,因果推断,知识蒸馏等技术。抓紧学起来吧。
秋枫学习笔记
2023/01/30
1.9K0
IJCAI2024推荐系统相关论文整理
第33届国际人工智能联合会议(International Joint Conference on Artificial Intelligence, 简称为IJCAI)是人工智能领域顶级的国际学术会议之一,也是CCF-A类会议。今年的IJCAI将于2024年8月03-09日在韩国济州岛举办。在今年的5461篇投稿论文中,有799篇大约14.63%的论文被接收,其中跟推荐系统相关的论文大约16篇。另外,跟(大)语言模型相关的论文40篇。
张小磊
2024/07/05
1.5K0
IJCAI2024推荐系统相关论文整理
异构广告混排在美团到店业务的探索与实践
总第494篇 2022年 第011篇 在LBS(Location Based Services, 基于位置的服务)距离约束下,候选较少制约了整个到店广告排序系统的潜力空间。本文介绍了我们从候选类型角度进行候选扩展,通过高性能的异构混排网络来应对性能的挑战,从而提升本地生活场景排序系统的潜能上限。希望能给从事相关方向的同学以启发。 1 背景与简介 1.1 背景 1.2 场景介绍 1.3 挑战与做法简介 2 技术探索与实践 2.1 高性能异构混排系统 2.2 生成式广告组合预估系统 2.3 异构广告冷启动优化
美团技术团队
2022/03/14
1.1K0
KDD2023推荐系统论文整理(应用专题)
第29届SIGKDD会议将于2023年8月6日至10日在美国加州长滩举行。据统计,今年共有725篇有效短文投稿,其中184篇论文被接收,接收率为25.37%,相比长文的22.10%有所降低。其中,涉及到的推荐系统相关的论文共35篇(本次只整理了ADS Track相关论文)。整理不易,欢迎小手点个在看/分享。
张小磊
2023/08/22
1.5K0
KDD2023推荐系统论文整理(应用专题)
SIGIR'22 推荐系统论文之对比学习篇
SIGIR 2022已公布录用论文,投稿长文794篇/短文667篇,录用长文161篇/短文165篇,录用率长文20%/短文24.7%,完整录用论文列表见https://sigir.org/sigir2022/program/accepted/。
枫桦
2022/08/02
2K0
SIGIR'22 推荐系统论文之对比学习篇
SIGIR'22 推荐系统论文之POI篇
SIGIR 2022已公布录用论文,投稿长文794篇/短文667篇,录用长文161篇/短文165篇,录用率长文20%/短文24.7%,完整录用论文列表见https://sigir.org/sigir2022/program/accepted/。
枫桦
2022/08/02
8810
SIGIR'22 推荐系统论文之POI篇
CIKM 2020 | 一文详解美团6篇精选论文
CIKM是信息检索、知识管理和数据库领域中顶级的国际学术会议,自1992年以来,CIKM成功汇聚上述三个领域的一流研究人员和开发人员,为交流有关信息与知识管理研究、数据和知识库的最新发展提供了一个国际论坛。大会的目的在于明确未来知识与信息系统发展将面临的挑战和问题,并通过征集和评估应用性和理论性强的顶尖研究成果以确定未来的研究方向。
美团技术团队
2020/12/14
1.1K0
CIKM 2020 | 一文详解美团6篇精选论文
搜推广生死判官:重排技术发展
全文1.2W字,PC阅读戳:https://f0jb1v8xcai.feishu.cn/wiki/LPlAwm6vSiesFBkysh8csZYfn1g
NewBeeNLP
2024/06/17
2.3K0
搜推广生死判官:重排技术发展
相关推荐
ACM SIGIR 2022 | 美团技术团队精选论文解读
更多 >
交个朋友
加入腾讯云官网粉丝站
蹲全网底价单品 享第一手活动信息
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档