前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【文献荐读】骨髓单细胞测序:一码通

【文献荐读】骨髓单细胞测序:一码通

作者头像
生信菜鸟团
发布2024-07-10 17:01:33
2350
发布2024-07-10 17:01:33
举报
文章被收录于专栏:生信菜鸟团

今天跟大家分享的是新鲜出炉的一篇骨髓单细胞测序文章【Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging】,作者这次将目光聚焦于骨髓的间充质干细胞而非免疫细胞,此外还提供了分群策略,值得反复学习~

之前在群里看到有小伙伴提到了这篇文章,其独特之处还在于样本的整合没有用到harmony。出于好奇,又恰好作者提供了非常详尽的代码和数据,因此决定将这篇文章好好消化一下,包括思路和分析过程,强推!

数据

Single-cell RNA-seq data can be downloaded from NCBI Gene Expression Omnibus (GEO) database with the accession number GSE253355

作者不仅提供了原始的features|barcodes|matrix文件,还直接提供了seurat文件,也方便我们对比。

代码

GitHub at https://github.com/ tanlabcode/spatial-bonemarrow-atlas

管中窥豹,看:

文章的每一处figure的出处都可以找到对应的代码,还有比这更生动的”学习实践“吗?而这仅仅是其中一个小小的部分,如果肯花时间把整个流程多捋几遍,收获肯定很大~

当然,要说明的是,一开始合并样本的部分,代码实在是有一丢丢繁琐,应该是可以更精简一点的:

代码语言:javascript
复制
# Load the cellranger output files
MACS <- Read10X(data.dir = "~/Documents/NBM_Microenvironment/SB51_H21andH23_scRNA/H14/With_Introns/MACS/filtered_feature_bc_matrix/")
H21 <- Read10X(data.dir = "~/Documents/NBM_Microenvironment/SB51_H21andH23_scRNA/H21/filtered_feature_bc_matrix/")
H23 <- Read10X(data.dir = "~/Documents/NBM_Microenvironment/SB51_H21andH23_scRNA/H23/filtered_feature_bc_matrix/")
H24 <- Read10X(data.dir = "~/Documents/NBM_Microenvironment/SB62_scRNASeq_S2/H24/filtered_feature_bc_matrix/")
H32 <- Read10X(data.dir = "~/Documents/NBM_Microenvironment/SB62_scRNASeq_S2/H32/filtered_feature_bc_matrix/")
H33 <- Read10X(data.dir = "~/Documents/NBM_Microenvironment/SB62_scRNASeq_S2/H33/filtered_feature_bc_matrix/")
H34 <- Read10X(data.dir = "~/Documents/NBM_Microenvironment/SB62_scRNASeq_S2/H34/filtered_feature_bc_matrix/")
H35 <- Read10X(data.dir = "~/Documents/NBM_Microenvironment/SB62_scRNASeq_S2/H35/filtered_feature_bc_matrix/")
H36 <- Read10X(data.dir = "~/Documents/NBM_Microenvironment/NBM_Atlas_scRNA/H36/filtered_feature_bc_matrix/")
H38 <- Read10X(data.dir = "~/Documents/NBM_Microenvironment/NBM_Atlas_scRNA/H38/filtered_feature_bc_matrix/")
H39 <- Read10X(data.dir = "~/Documents/NBM_Microenvironment/NBM_Atlas_scRNA/H39/filtered_feature_bc_matrix/")
H41 <- Read10X(data.dir = "~/Documents/NBM_Microenvironment/NBM_Atlas_scRNA/H41/filtered_feature_bc_matrix/")
代码语言:javascript
复制
# Initialize the Seurat object with the raw (non-normalized data).
MACS <- CreateSeuratObject(counts = MACS, project = "H14_MACS", min.cells = 3, min.features = 100)
MACS
H21 <- CreateSeuratObject(counts = H21, project = "H21", min.cells = 3, min.features = 100)
H21
H23 <- CreateSeuratObject(counts = H23, project = "H23", min.cells = 3, min.features = 100)
H23
H24 <- CreateSeuratObject(counts = H24, project = "H24", min.cells = 3, min.features = 100)
H24
H32 <- CreateSeuratObject(counts = H32, project = "H32", min.cells = 3, min.features = 100)
H32
H33 <- CreateSeuratObject(counts = H33, project = "H33", min.cells = 3, min.features = 100)
H33
H34 <- CreateSeuratObject(counts = H34, project = "H34", min.cells = 3, min.features = 100)
H34
H35 <- CreateSeuratObject(counts = H35, project = "H35", min.cells = 3, min.features = 100)
H35
H36 <- CreateSeuratObject(counts = H36, project = "H36", min.cells = 3, min.features = 100)
H36
H38 <- CreateSeuratObject(counts = H38, project = "H38", min.cells = 3, min.features = 100)
H38
H39 <- CreateSeuratObject(counts = H39, project = "H39", min.cells = 3, min.features = 100)
H39
H41 <- CreateSeuratObject(counts = H41, project = "H41", min.cells = 3, min.features = 100)
H41

然后,就是反复×3:

代码语言:javascript
复制
ob.list <- list(MACS, H21, H23,H24,H32,H33,H34,H35, H36, H38, H39, H41)
for (i in 1:length(ob.list)) {
  ob.list[[i]][["percent.mt"]] <- PercentageFeatureSet(ob.list[[i]], pattern = "^MT-")
  ob.list[[i]] <- subset(ob.list[[i]], subset = nFeature_RNA > 100 & nFeature_RNA < 10000 & percent.mt < 10)
  # ob.list[[i]] <- subset(ob.list[[i]], cells = cells.use)
  ob.list[[i]] <- NormalizeData(ob.list[[i]])
  ob.list[[i]] <- FindVariableFeatures(ob.list[[i]])
  ob.list[[i]] <- ScaleData(ob.list[[i]])
  ob.list[[i]] <- RunPCA(ob.list[[i]], features = VariableFeatures(object = ob.list[[i]]))
  ob.list[[i]] <- RunUMAP(ob.list[[i]], dims = 1:30, reduction.name = "UMAP_dim30", reduction.key = "UMAP_dim30_")
  ob.list[[i]] <- RunUMAP(ob.list[[i]], dims = 1:50, reduction.name = "UMAP_dim50", reduction.key = "UMAP_dim50_")
  ob.list[[i]] <- FindNeighbors(ob.list[[i]], dims = 1:30)
  ob.list[[i]] <- FindClusters(ob.list[[i]], resolution = 1)
  ob.list[[i]] <- FindDoublets(ob.list[[i]], PCs = 1:30, sct = FALSE, exp_rate = (length(colnames(ob.list[[i]]))/125000))
}

MACS <- ob.list[[1]]
H21 <- ob.list[[2]]
H23 <- ob.list[[3]]
H24 <- ob.list[[4]]
H32 <- ob.list[[5]]
H33 <- ob.list[[6]]
H34 <- ob.list[[7]]
H35 <- ob.list[[8]]
H36 <- ob.list[[9]]
H38 <- ob.list[[10]]
H39 <- ob.list[[11]]
H41 <- ob.list[[12]]
代码语言:javascript
复制
combined <- merge(x = MACS, y = c(H21, H23,H24, H32, H33,H34,H35,H36, H38, H39, H41), add.cell.ids = c("H14_MACS", "H21", "H23","H24", "H32", "H33", "H34", "H35", "H36", "H38", "H39","H41"), project = "SB62_NBM")

ob.list <- list(combined)

for (i in 1:length(ob.list)) {
  ob.list[[i]][["percent.mt"]] <- PercentageFeatureSet(ob.list[[i]], pattern = "^MT-")
  ob.list[[i]] <- subset(ob.list[[i]], subset = nFeature_RNA > 100 & nFeature_RNA < 10000 & percent.mt < 10)
  ob.list[[i]] <- subset(ob.list[[i]], subset = Doublet_Singlet == "Singlet")
  ob.list[[i]] <- NormalizeData(ob.list[[i]])
  ob.list[[i]] <- FindVariableFeatures(ob.list[[i]])
  ob.list[[i]] <- ScaleData(ob.list[[i]])
  ob.list[[i]] <- RunPCA(ob.list[[i]], features = VariableFeatures(object = ob.list[[i]]))
  ob.list[[i]] <- RunUMAP(ob.list[[i]], dims = 1:30, reduction.name = "UMAP_dim30", reduction.key = "UMAP_dim30_")
  ob.list[[i]] <- RunUMAP(ob.list[[i]], dims = 1:50, reduction.name = "UMAP_dim50", reduction.key = "UMAP_dim50_")
  ob.list[[i]] <- FindNeighbors(ob.list[[i]], dims = 1:30)
  ob.list[[i]] <- FindClusters(ob.list[[i]], algorithm = 2, resolution = 1)
}

combined <- FindClusters(combined, algorithm = 2, resolution = 1.5)

combined <- ob.list[[1]]
代码语言:javascript
复制
combined <- subset(combined, subset = seurat_clusters != 46 & seurat_clusters != 41 & seurat_clusters != 45)

ob.list <- list(combined)

for (i in 1:length(ob.list)) {
  ob.list[[i]][["percent.mt"]] <- PercentageFeatureSet(ob.list[[i]], pattern = "^MT-")
  ob.list[[i]] <- subset(ob.list[[i]], nFeature_RNA > 300 & nCount_RNA > 1000 & nFeature_RNA < 10000 & percent.mt < 10)
  ob.list[[i]] <- subset(ob.list[[i]], subset = Doublet_Singlet == "Singlet")
  ob.list[[i]] <- NormalizeData(ob.list[[i]])
  ob.list[[i]] <- FindVariableFeatures(ob.list[[i]])
  ob.list[[i]] <- ScaleData(ob.list[[i]])
  ob.list[[i]] <- RunPCA(ob.list[[i]], features = VariableFeatures(object = ob.list[[i]]))
  ob.list[[i]] <- RunUMAP(ob.list[[i]], dims = 1:30, reduction.name = "UMAP_dim30", reduction.key = "UMAP_dim30_")
  ob.list[[i]] <- RunUMAP(ob.list[[i]], dims = 1:50, reduction.name = "UMAP_dim50", reduction.key = "UMAP_dim50_")
  ob.list[[i]] <- FindNeighbors(ob.list[[i]], dims = 1:30)
  ob.list[[i]] <- FindClusters(ob.list[[i]], algorithm = 2, resolution = 1.5)
}


combined <- ob.list[[1]]

如果这一套在本地跑的话,一定要对自己的电脑有很大的信心才行😀

如果不想从开始跑的话,就直接下载rds文件赋值为combined,然后从

代码语言:javascript
复制
# Find and save all markers for combined UMAP
combined_markers <- FindAllMarkers(combined, max.cells.per.ident = 1000) # Downsample 1000 cells per cluster
write.csv(combined_markers, "SB66_combined_markers.csv")

这一步往下走😄

每出一个图可以直接和原文对比,比较异同。

marker

此外,作者还在补充材料中提供了细胞亚群的marker,这可以成为后续我们对骨髓组织分群的依据

好记性不如烂笔头,我是手写方便随时翻阅啦~

拓展资源

除了作者自己的数据以外,作者还将自己的数据与另一个数据库中骨髓的数据进行了对比,这无疑又是另一个学习的资源

Azimuth (hubmapconsortium.org)

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-07-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信菜鸟团 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 数据
  • 代码
  • marker
  • 拓展资源
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档