最近看了伊斯坦布尔
的介绍,希望有一天可以去看一下,世界的首都
。😭
自己一身班味儿!~🫠
每天满满的职业倦怠,只想休假。😂
rm(list = ls())
library(Mime1)
load("./Example.ici.Rdata")
load("./genelist.Rdata")
res.ici <- ML.Dev.Pred.Category.Sig(train_data = list_train_vali_Data$training,
list_train_vali_Data = list_train_vali_Data,
candidate_genes = genelist,
methods = c('nb','svmRadialWeights','rf','kknn','adaboost','LogitBoost','cancerclass'),
seed = 123,
cores_for_parallel = 60
)
auc_vis_category_all(res.ici,dataset = c("training","validation"),
order= c("training","validation"))
plot_list<-list()
methods <- c('nb','svmRadialWeights','rf','kknn','adaboost','LogitBoost','cancerclass')
for (i in methods) {
plot_list[[i]]<-roc_vis_category(res.ici,model_name = i,dataset = c("training","validation"),
order= c("training","validation"),
anno_position=c(0.4,0.25))
}
aplot::plot_list(gglist=plot_list,ncol=3)
比较AUC
。🙊
auc.other.pre <- cal_auc_previous_sig(list_train_vali_Data = list_train_vali_Data,seed = 123,
train_data = list_train_vali_Data$training,
cores_for_parallel = 32)
可视化一下比较结果。😘
auc_category_comp(res.ici,
auc.other.pre,
model_name="svmRadialWeights",
dataset=names(list_train_vali_Data))
load("./Example.cohort.Rdata")
load("./genelist.Rdata")
res.feature.all <- ML.Corefeature.Prog.Screen(InputMatrix = list_train_vali_Data$Dataset1,
candidate_genes = genelist,
mode = "all",nodesize =5,seed = 123)
upset
图展示结果!~😘
core_feature_select(res.feature.all)
可视化Top 20
的特征基因。🧬
core_feature_rank(res.feature.all, top=20)
计算指定基因的相关性
dataset_col<-c("#3182BDFF","#E6550DFF")
corplot <- list()
for (i in c(1:2)) {
print(corplot[[i]]<-cor_plot(list_train_vali_Data[[i]],
dataset=names(list_train_vali_Data)[i],
color = dataset_col[i],
feature1="PSEN2",
feature2="WNT5B",
method="pearson"))
}
aplot::plot_list(gglist=corplot,ncol=2)
根据不同数据集中特定基因的中位表达水平绘制患者的生存曲线。🙊
survplot <- vector("list",2)
for (i in c(1:2)) {
print(survplot[[i]]<-core_feature_sur("PSEN2",
InputMatrix=list_train_vali_Data[[i]],
dataset = names(list_train_vali_Data)[i],
#color=c("blue","green"),
median.line = "hv",
cutoff = 0.5,
conf.int = T,
xlab="Day",pval.coord=c(1000,0.9)))
}
aplot::plot_list(gglist=survplot,ncol=2)