复现GMM文章的的Fig1图。
library(tidyr)
library(tidyverse)
library(dplyr)
library(ggsci)
library(ggpubr)
所有的数据百度网盘链接: https://pan.baidu.com/s/1isKEK1G5I6X90KYqLufmWw
提取码: t9ca
load("01_data/plot_data/F1B.RData")
head(temp)
temp %>%
mutate(type=factor(type, levels=c("Intestinal" ,"Metabolic" , "Mental" , "Autoimmune", "Liver"))) %>%
arrange(desc(count)) %>%
mutate(disease=factor(disease, levels=unique(disease))) %>%
ggplot(aes(x=disease, y=count,group=data_type)) +
geom_bar(stat="identity",position='stack', aes(fill=data_type)) +
geom_text(aes(label=count),position=position_stack(vjust = 0.5),size=7)+
facet_grid(~type, scales="free", space="free") +
theme_classic() +
theme(axis.text.x=element_text(angle=45, hjust=1,face = 'bold',size=12),
axis.text.y=element_text(face = 'bold',size=12),
plot.title=element_text(hjust=0.5)) +
ylab("No. of project") +
xlab('disease') +
coord_cartesian(ylim=c(0,11),expand=FALSE) +
scale_y_continuous(breaks=seq(0, 12, 2))+
theme(panel.border = element_blank(), axis.line = element_line())+
scale_fill_d3(alpha = 0.5)+
theme(text = element_text(size=16,face = 'plain',family ='',colour = 'black'))
load("01_data/plot_data/F1C.RData")
head(project_stat0)
project_stat0 <- gather(project_stat0,phenotype,num,c('case','control'))
project_stat0$phenotype <- factor(project_stat0$phenotype,levels = c('control','case'))
ggdensity(project_stat0, 'num', color="phenotype",palette = "aaas",add = "median",alpha = 0.1,size=1,fill ="phenotype",rug = TRUE)+
labs(x = 'No. of samples in each cohort',y='Density')+
annotate("text", label = paste0("Median: ",median(subset(project_stat0,phenotype=='case')$num)), x = 150, y = 0.015, size = 4, colour = pal_aaas("default", alpha = 0.6)(10)[2])+
annotate("text", label = paste0("Median: ",median(subset(project_stat0,phenotype=='control')$num)), x = 150, y = 0.013, size = 4, colour = pal_aaas("default", alpha = 0.6)(10)[1])
load('01_data/plot_data/F1D.RData')
head(auc_self)
stat.test <- compare_means(
auc~group1,data = auc_self,
# group.by = "level",
method = "wilcox.test") %>%
mutate(y.position = seq(from=1.05, to=1.65,length.out=10))
x <- stat.test$p.adj
stat.test$p.adj.signif <- ifelse(x<0.05, ifelse(x<0.01, ifelse(x<0.001, ifelse(x<=0.0001, '****','***'),'**'),'*'),'ns')
ggboxplot(auc_self, x = "group1", y = "auc", fill = "group1",
palette = "jco",width = 0.2)+
geom_hline(yintercept =0.5,color='#dbdcdc')+
geom_hline(yintercept =0.6,color='#ffd09a')+
geom_hline(yintercept =0.7,color='#ffcbd8')+
geom_hline(yintercept =0.8,color='#7b77ff')+
geom_hline(yintercept =0.9,color='#e60020')+
# stat_compare_means()+
ylim(0.05,1.68)+
theme(legend.position="none")+
ylab("Internal AUC")+xlab('')+
ggtitle('Disease category')+
theme(axis.text.x=element_text(angle=20, hjust=0.8,face = 'plain',size=13),
text = element_text(size=13,face = 'plain',family ='',colour = 'black')) +
stat_pvalue_manual(stat.test,label = "p.adj.signif")
load('01_data/plot_data/F1E.RData')
head(self.e)
stat.test <- compare_means(
auc~level,data = self.e,
# group.by = "level",
method = "wilcox.test") %>%
mutate(y.position = seq(from=1.2, to=1.65,length.out=3))
x <- stat.test$p.adj
stat.test$p.adj.signif <- ifelse(x<0.05, ifelse(x<0.01, ifelse(x<0.001, ifelse(x<=0.0001, '****','***'),'**'),'*'),'ns')
ggboxplot(self.e, x = "level", y = "auc", fill = "level",
width = 0.2,palette = c('#774ec7','#bd93cc','#a2c4b1'))+
geom_hline(yintercept =0.5,color='#dbdcdc')+
geom_hline(yintercept =0.6,color='#ffd09a')+
geom_hline(yintercept =0.7,color='#ffcbd8')+
geom_hline(yintercept =0.8,color='#7b77ff')+
geom_hline(yintercept =0.9,color='#e60020')+
ylim(0.05,1.68)+
# stat_compare_means()+
theme(legend.position="none")+
ylab("Internal AUC")+xlab('')+
ggtitle('Data type')+
theme(axis.text.x=element_text(angle=20, hjust=0.8,face = 'plain',size=13),
text = element_text(size=13,face = 'plain',family ='',colour = 'black')) +
stat_pvalue_manual(stat.test,label = "p.adj.signif")
load('01_data/plot_data/F1FG.RData')
head(a_all)
ggboxplot(a_all, x = "method", y = "auc", fill = "method",
palette = c('#1fb8b4','#ff7f0e'),width = 0.15)+
geom_hline(yintercept =0.5,color='#dbdcdc')+
geom_hline(yintercept =0.6,color='#ffd09a')+
geom_hline(yintercept =0.7,color='#ffcbd8')+
geom_hline(yintercept =0.8,color='#7b77ff')+
geom_hline(yintercept =0.9,color='#e60020')+
facet_wrap(~group1,nrow = 1)+
# annotate('text',x=1:2,y=0.15,label=c('0.765','0.638'))+ #AUC
geom_signif(comparisons =list(c('internal','external')),
y_position = c(1.12, 1.32),
test = 'wilcox.test',
map_signif_level = function(x){ifelse(x<0.05,
ifelse(x<0.01,
ifelse(x<0.001,
ifelse(x<=0.0001, '****','***'),'**'),'*'),'ns')})+
ylim(0.05,1.32)+
theme(legend.position="top")+
xlab("") + ylab("AUC")+
labs(fill = "AUC type")+
theme(text = element_text(size=13,face = 'plain',family ='',colour = 'black'),
axis.text.x = element_blank(),
axis.ticks=element_blank())
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。