# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`
!pip install mindnlp
BERT是一种由Google于2018年发布的新型语言模型,它是基于Transformer中的Encoder并加上双向的结构。BERT模型采用了Masked Language Model和Next Sentence Prediction两种方法进行预训练,以捕捉词语和句子级别的representation。预训练之后,BERT可以用于下游任务的Fine-tuning,比如文本分类、相似度判断等。此外,BERT还可以应用于对话情绪识别,帮助企业改善产品的用户交互体验。
import os
import mindspore
from mindspore.dataset import text, GeneratorDataset, transforms
from mindspore import nn, context
from mindnlp._legacy.engine import Trainer, Evaluator
from mindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallback
from mindnlp._legacy.metrics import Accuracy
# prepare dataset
class SentimentDataset:
"""Sentiment Dataset"""
def __init__(self, path):
self.path = path
self._labels, self._text_a = [], []
self._load()
def _load(self):
with open(self.path, "r", encoding="utf-8") as f:
dataset = f.read()
lines = dataset.split("\n")
for line in lines[1:-1]:
label, text_a = line.split("\t")
self._labels.append(int(label))
self._text_a.append(text_a)
def __getitem__(self, index):
return self._labels[index], self._text_a[index]
def __len__(self):
return len(self._labels)
该数据集包括情绪分类的类别和经过分词预处理的中文文本,数据由两列组成,以制表符分隔,第一列是情绪分类的类别(0表示消极;1表示中性;2表示积极),第二列是经过空格分词的中文文本。数据集读取后进行 Tokenize 处理和 pad 操作。
# download dataset
!wget https://baidu-nlp.bj.bcebos.com/emotion_detection-dataset-1.0.0.tar.gz -O emotion_detection.tar.gz
!tar xvf emotion_detection.tar.gz
import numpy as np
def process_dataset(source, tokenizer, max_seq_len=64, batch_size=32, shuffle=True):
is_ascend = mindspore.get_context('device_target') == 'Ascend'
column_names = ["label", "text_a"]
dataset = GeneratorDataset(source, column_names=column_names, shuffle=shuffle)
# transforms
type_cast_op = transforms.TypeCast(mindspore.int32)
def tokenize_and_pad(text):
if is_ascend:
tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)
else:
tokenized = tokenizer(text)
return tokenized['input_ids'], tokenized['attention_mask']
# map dataset
dataset = dataset.map(operations=tokenize_and_pad, input_columns="text_a", output_columns=['input_ids', 'attention_mask'])
dataset = dataset.map(operations=[type_cast_op], input_columns="label", output_columns='labels')
# batch dataset
if is_ascend:
dataset = dataset.batch(batch_size)
else:
dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),
'attention_mask': (None, 0)})
return dataset
BERT是一种新型的预训练语言模型,可以用于多种自然语言处理任务。 123 对话情绪识别是一种重要的对话系统任务,可以用于改善用户交互体验。