MaxKB = Max Knowledge Base,是一款基于 LLM 大语言模型的开源知识库问答系统,旨在成为企业的最强大脑。它能够帮助企业高效地管理知识,并提供智能问答功能。想象一下,你有一个虚拟助手,可以回答各种关于公司内部知识的问题,无论是政策、流程,还是技术文档,MaxKB 都能快速准确地给出答案:比如公司内网如何访问、如何提交视觉设计需求等等
官方网址:https://maxkb.cn/
开箱即用
:支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化、RAG(检索增强生成),智能问答交互体验好;
无缝嵌入
:支持零编码快速嵌入到第三方业务系统,让已有系统快速拥有智能问答能力,提高用户满意度;
灵活编排
:内置强大的工作流引擎,支持编排 AI 工作流程,满足复杂业务场景下的需求;模型中立
:支持对接各种大语言模型,包括本地私有大模型(Llama 3 / Qwen 2 等)、国内公共大模型(通义千问 / 智谱 AI / 百度千帆 / Kimi / DeepSeek 等)和国外公共大模型(OpenAI / Azure OpenAI / Gemini 等)。Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。
由于 Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,并同时提供了一套易用的界面和 API。这为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上
Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。以下是其核心功能列表:
工作流
: 在画布上构建和测试功能强大的 AI 工作流程,利用以下所有功能以及更多功能。
全面的模型支持
: 与数百种专有/开源 LLMs 以及数十种推理提供商和自托管解决方案无缝集成,涵盖 GPT、Mistral、Llama3 以及任何与 OpenAI API 兼容的模型。
Prompt IDE
: 用于制作提示、比较模型性能以及向基于聊天的应用程序添加其他功能(如文本转语音)的直观界面。
RAG Pipeline
: 广泛的 RAG 功能,涵盖从文档摄入到检索的所有内容,支持从 PDF、PPT 和其他常见文档格式中提取文本的开箱即用的支持。
Agent 智能体
: 您可以基于 LLM 函数调用或 ReAct 定义 Agent,并为 Agent 添加预构建或自定义工具。Dify 为 AI Agent 提供了50多种内置工具,如谷歌搜索、DELL·E、Stable Diffusion 和 WolframAlpha 等。
LLMOps
: 随时间监视和分析应用程序日志和性能。您可以根据生产数据和标注持续改进提示、数据集和模型。
后端即服务
: 所有 Dify 的功能都带有相应的 API,因此您可以轻松地将 Dify 集成到自己的业务逻辑中。
工作流通过将复杂的任务分解成较小的步骤(节点)降低系统复杂度,减少了对提示词技术和模型推理能力的依赖,提高了 LLM 应用面向复杂任务的性能,提升了系统的可解释性、稳定性和容错性。
Dify 工作流分为两种类型:
为解决自然语言输入中用户意图识别的复杂性,Chatflow 提供了问题理解类节点。相对于 Workflow 增加了 Chatbot 特性的支持,如:对话历史(Memory)、标注回复、Answer 节点等。
为解决自动化和批处理情景中复杂业务逻辑,工作流提供了丰富的逻辑节点,如代码节点、IF/ELSE 节点、模板转换、迭代节点等,除此之外也将提供定时和事件触发的能力,方便构建自动化流程。
FastGPT是一个功能强大的平台,专注于知识库训练和自动化工作流程的编排。它提供了一个简单易用的可视化界面,支持自动数据预处理和基于Flow模块的工作流编排。FastGPT支持创建RAG系统,提供自动化工作流程等功能,使得构建和使用RAG系统变得简单,无需编写复杂代码。
专属 AI 客服
:通过导入文档或已有问答对进行训练,让 AI 模型能根据你的文档以交互式对话方式回答问题。 简单易用的可视化界面
:FastGPT 采用直观的可视化界面设计,为各种应用场景提供了丰富实用的功能。通过简洁易懂的操作步骤,可以轻松完成 AI 客服的创建和训练流程。自动数据预处理
:提供手动输入、直接分段、LLM 自动处理和 CSV 等多种数据导入途径,其中“直接分段”支持通过 PDF、WORD、Markdown 和 CSV 文档内容作为上下文。FastGPT 会自动对文本数据进行预处理、向量化和 QA 分割,节省手动训练时间,提升效能。工作流编排
:基于 Flow 模块的工作流编排,可以帮助你设计更加复杂的问答流程。例如查询数据库、查询库存、预约实验室等。 强大的 API 集成
:FastGPT 对外的 API 接口对齐了 OpenAI 官方接口,可以直接接入现有的 GPT 应用,也可以轻松集成到企业微信、公众号、飞书等平台。RAGFlow 是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。
官网:https://ragflow.io/
Github:https://github.com/infiniflow/ragflow/blob/main
AnythingLLM是一个全栈应用程序,您可以使用现成的商业大语言模型或流行的开源大语言模型,再结合向量数据库解决方案构建一个私有ChatGPT,不再受制于人:您可以本地运行,也可以远程托管,并能够与您提供的任何文档智能聊天。
AnythingLLM将您的文档划分为称为workspaces (工作区)的对象。工作区的功能类似于线程,同时增加了文档的容器化,。工作区可以共享文档,但工作区之间的内容不会互相干扰或污染,因此您可以保持每个工作区的上下文清晰。
官方:https://anythingllm.com/
github:https://github.com/Mintplex-Labs/anything-llm
更多框架推荐参考下述文章:LLM框架、RAG框架、Agent框架
DB-GPT是一个开源的AI原生数据应用开发框架(AI Native Data App Development framework with AWEL(Agentic Workflow Expression Language) and Agents)。
目的是构建大模型领域的基础设施,通过开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单,更方便。
数据3.0 时代,基于模型、数据库,企业/开发者可以用更少的代码搭建自己的专属应用。
项目支持市面上主流的开源 LLM、 Embedding 模型与向量数据库,可实现全部使用开源模型离线私有部署。与此同时,本项目也支持 OpenAI GPT API 的调用,并将在后续持续扩充对各类模型及模型 API 的接入。
原理如下图所示:过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的 top k个 -> 匹配出的文本作为上下文和问题一起添加到 prompt中 -> 提交给 LLM生成回答。
在选择AI应用开发平台时,了解不同平台的功能、社区支持以及部署便捷性是非常重要的。
大模型接入灵活性
:提供了多种大模型接入方式,支持多种API接口,使得开发者可以根据需求灵活选择和切换模型,这对于需要高性能模型的应用场景尤为重要。
强大的Chat功能
:Chat功能不仅支持多轮对话,还能通过智能推荐和上下文理解提升用户体验,适用于需要复杂交互的场景。
丰富的知识库支持
:内置了知识库管理系统,支持多种数据格式的导入和导出,便于用户管理和利用知识资源。
高效的Workflow设计
:Workflow设计简洁直观,支持拖拽式操作,使得非技术人员也能快速上手,大大降低了使用门槛。
Prompt IDE
:提供的Prompt IDE工具,让开发者可以更直观地调试和优化提示词,提升了开发效率。
学习曲线
:虽然界面设计较为友好,但对于初学者来说,仍需要一定时间来熟悉其工作流程和功能。
社区支持
:相较于一些成熟的开发平台,社区活跃度和资源丰富度还有待提升,这可能会影响到开发者在遇到问题时的解决速度。
定制化程度
:虽然Dify提供了丰富的功能,但在某些高度定制化的需求上,可能还需要进一步的开发和调整。
Agent智能体
:Agent智能体功能强大,能够自动执行复杂任务,减少了人工干预的需求,适用于需要自动化处理大量任务的场景。
LLMOps支持
:提供了LLMOps支持,使得开发者可以更方便地进行模型训练、优化和部署,这对于AI模型的持续迭代和优化至关重要。
后端即服务
:提供了后端即服务的功能,简化了后端开发流程,使得开发者可以更专注于前端和业务逻辑的开发。
强大的RAG引擎
:RAG引擎能够高效地处理和检索大量数据,适用于需要快速响应和高吞吐量的应用场景。
功能复杂性
:FastGPT的功能较为复杂,对于初学者来说,可能需要较长时间来掌握其使用方法和技巧。
部署难度
:相较于一些轻量级的开发平台,FastGPT的部署过程可能更为复杂,需要一定的技术背景和经验。
用户界面
:虽然FastGPT的功能强大,但其用户界面可能不如一些竞争对手直观和友好,这可能会影响到用户的使用体验。
选择合适的平台首先要明确自己的需求。Dify和FastGPT各有特点,适用于不同的应用场景。
社区支持和资源丰富度对于平台的选择也至关重要。
部署和使用的便捷性直接影响开发效率和成本。
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有