日常开发中,我们经常听到系统的可用性是几个 9这样的描述,因此,这篇文章,我们将探讨什么是可用性、如何计算可用性以及提高可用性的一些常用策略。
系统的可用性(Availability)是衡量一个系统在特定时间段内能够正常运行并提供服务的能力。
可用性计算方式:
text 代码解读复制代码Availability = Uptime / (Uptime + Downtime)
举个例子,假如一年 365天,停机总时间 2天,那么可用性的计算为:
text 代码解读复制代码Availability = (365-2) / 365
= 363 / 365
= 0.99452
转换成百分比 = 99.452 %
系统可用性,可用性通常用“9”表示,可用性越高,停机时间就越少。如下图所示:
提升系统可用性的方法包括但不限于以下几种:
冗余设计是提升系统可用性常用的方式,比如,分布式部署,异地多活等,冗余设计常见的技术策略主要有以下 3种:
当检测到故障时,故障切换机制会自动切换到冗余系统。常用的技术策略有:
在实际开发中,绝大部署业务都是对数据进行处理,因此数据的重要性不言而喻,对于数据可用性常用的技术点有:
负载均衡在多个服务器之间分配传入的网络流量,以确保没有单个服务器成为瓶颈,从而提高性能和可用性。
容错设计(Fault Tolerance Design),旨在使系统能够在某些组件发生故障时仍然继续正常运行,它的核心理念是通过冗余和其他技术手段,避免单点故障导致系统整体失效。
以下是容错设计的一些具体方法和技术:
在现实生活中,不管是人的健康还是机器或者其他的健康,都需要定期维护,对于系统来说也是一样的道理,通过定期的维护和更新,可以及时发现和解决潜在问题,防止系统故障,提升系统的整体可用性。
以下是定期维护与更新的主要策略:
可用性是我们在做系统设计时一个重要指标,它确保用户可以可靠且持续地访问服务。因此,我们可以结合真实的业务需求,在上面提供的一些技术策略中灵活选择。
本文系转载,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文系转载,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。