前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >兼容Trino Connector,扩展Apache Doris数据源接入能力|Lakehouse 使用手册(四)

兼容Trino Connector,扩展Apache Doris数据源接入能力|Lakehouse 使用手册(四)

原创
作者头像
SelectDB技术团队
发布2024-09-06 14:27:38
770
发布2024-09-06 14:27:38
举报
文章被收录于专栏:Apache Doris

Apache Doris 内置支持包括 Hive、IcebergHudiPaimon、LakeSoul、JDBC 在内的多种 Catalog,并为其提供原生高性能且稳定的访问能力,以满足与数据湖的集成需求。而随着 Apache Doris 用户的增加,新的数据源连接需求也随之增加。因此,从 3.0 版本开始,Apache Doris 引入了 Trino Connector 兼容框架。

Trino/Presto 作为业界较早应用于湖仓查询、联邦分析的计算引擎,以广泛的数据源对接能力闻名。支持包括 Hive、Iceberg、Hudi、Paimon、Delta Lake、Kudu、BigQuery、Redis、Kafka 在内的数十种数据源,而这一能力主要得益于其插件化的 Connector 框架。Apache Doris 为快速提升数据接入能力与扩展性,并减少对每个数据源支持的开发工作量,选择兼容现有的 Connector 框架是一种高效且合理的解决方案。

通过兼容 Connector 插件,Apache Doris 能够支持 Trino/Presto 可对接的所有数据源,而无需改动 Doris 的内核代码。 该兼容框架不依赖 Trino 服务本身,仅需将编译好的 Connector 插件 JAR 文件部署到 Doris 集群即可使用。对于用户自研的 Connector 插件,也可以快速对接,实现业务平滑迁移。这一结合,为用户提供了更加完善、开放和高性能的查询服务。

目前 Apache Doris 已完成以下 Connector 适配:

Trino Connector 插件兼容方案作为 Apache Doris Catalog 功能的补充,旨在帮助用户快速进行数据源集成和基础的数据迁移,在性能和兼容性方面可能存在不足,欢迎加入社区一同改进。对于 Hive、Iceberg、Hudi、Paimon 等数据源,建议使用 Apache Doris 原生 Catalog 进行访问, 以便于获得最好的性能和稳定性。

本文将帮忙读者快速了解,如何在 Docker 环境下快速搭建 Apache Doris + Apache Delta Lake + Apache Kudu 测试 & 演示环境,并演示如何在 Doris 中适配一个新的 Trino Connector 插件。

使用指南

本文涉及脚本&代码从该地址获取:https://github.com/apache/doris/tree/master/samples/datalake/deltalake_and_kudu

01 环境准备

本文示例采用 Docker Compose 部署,组件及版本号如下:

使用指南-环节准备.png
使用指南-环节准备.png

02 环境部署

1. 创建新的网络

代码语言:javascript
复制
 docker network create -d bridge trinoconnector-net

2. 启动所有组件

代码语言:javascript
复制
sh start-trinoconnector-compose.sh

3. 启动后,可以使用如下脚本,登陆 Doris 命令行

代码语言:javascript
复制
sh login-doris.sh

03 创建 Catalog

登陆 Doris 命令行后,Doris 集群中已创建了名为 delta_lakekudu_catalog 的 Catalog(可通过 SHOW CATALOGS/ SHOW CREATE CATALOG ${catalog_name}查看)。以下为这两个 Catalog 的创建语句:

代码语言:javascript
复制
-- 已创建,无需执行
create catalog delta_lake properties (
  "type"="trino-connector",
  "trino.connector.name"="delta_lake",
  "trino.hive.metastore.uri"="thrift://hive-metastore:9083",
  "trino.hive.s3.endpoint"="http://minio:9000",
  "trino.hive.s3.region"="us-east-1",
  "trino.hive.s3.aws-access-key"="minio",
  "trino.hive.s3.aws-secret-key"="minio123",
  "trino.hive.s3.path-style-access"="true"
);
​
CREATE CATALOG `kudu_catalog` PROPERTIES (
    "type" = "trino-connector",
    "trino.connector.name" = "kudu",
    "trino.kudu.authentication.type" = "NONE",
    "trino.kudu.client.master-addresses" = "kudu-master-1:7051,kudu-master-2:7151,kudu-master-3:7251"
);

04 数据查询

在启动的 Docker 环境中,可直接在 Doris 集群中查询 Deltalake 和 Kudu 的数据:

查询 Deltalake 表数据

代码语言:javascript
复制
mysql> switch delta_lake;
Query OK, 0 rows affected (0.00 sec)
​
mysql> use default;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
​
Database changed
mysql> select * from customer limit 10;
+-----------+--------------------+------------------------------------+-------------+-----------------+-----------+--------------+---------------------------------------------------------------------------------------------------------------+
| c_custkey | c_name             | c_address                          | c_nationkey | c_phone         | c_acctbal | c_mktsegment | c_comment                                                                                                     |
+-----------+--------------------+------------------------------------+-------------+-----------------+-----------+--------------+---------------------------------------------------------------------------------------------------------------+
|         2 | Customer#000000002 | XSTf4,NCwDVaWNe6tEgvwfmRchLXak     |          13 | 23-768-687-3665 |    121.65 | AUTOMOBILE   | l accounts. blithely ironic theodolites integrate boldly: caref                                               |
|        34 | Customer#000000034 | Q6G9wZ6dnczmtOx509xgE,M2KV         |          15 | 25-344-968-5422 |   8589.70 | HOUSEHOLD    | nder against the even, pending accounts. even                                                                 |
|        66 | Customer#000000066 | XbsEqXH1ETbJYYtA1A                 |          22 | 32-213-373-5094 |    242.77 | HOUSEHOLD    | le slyly accounts. carefully silent packages benea                                                            |
|        98 | Customer#000000098 | 7yiheXNSpuEAwbswDW                 |          12 | 22-885-845-6889 |   -551.37 | BUILDING     | ages. furiously pending accounts are quickly carefully final foxes: busily pe                                 |
|       130 | Customer#000000130 | RKPx2OfZy0Vn 8wGWZ7F2EAvmMORl1k8iH |           9 | 19-190-993-9281 |   5073.58 | HOUSEHOLD    | ix slowly. express packages along the furiously ironic requests integrate daringly deposits. fur              |
|       162 | Customer#000000162 | JE398sXZt2QuKXfJd7poNpyQFLFtth     |           8 | 18-131-101-2267 |   6268.99 | MACHINERY    | accounts along the doggedly special asymptotes boost blithely during the quickly regular theodolites. slyly   |
|       194 | Customer#000000194 | mksKhdWuQ1pjbc4yffHp8rRmLOMcJ      |          16 | 26-597-636-3003 |   6696.49 | HOUSEHOLD    | quickly across the fluffily dogged requests. regular platelets around the ironic, even requests cajole quickl |
|       226 | Customer#000000226 | ToEmqB90fM TkLqyEgX8MJ8T8NkK       |           3 | 13-452-318-7709 |   9008.61 | AUTOMOBILE   | ic packages. ideas cajole furiously slyly special theodolites: carefully express pinto beans acco             |
|       258 | Customer#000000258 | 7VbADek8qYezQYotxNUmnNI            |          12 | 22-278-425-9944 |   6022.27 | MACHINERY    | about the regular, bold accounts; pending packages use furiously stealthy warhorses. bold accounts sleep fur  |
|       290 | Customer#000000290 | 8OlPT9G 8UqVXmVZNbmxVTPO8          |           4 | 14-458-625-5633 |   1811.35 | MACHINERY    | sts. blithely pending requests sleep fluffily on the regular excuses. carefully expre                         |
+-----------+--------------------+------------------------------------+-------------+-----------------+-----------+--------------+---------------------------------------------------------------------------------------------------------------+
10 rows in set (0.12 sec)

查询 Kudu 表数据

代码语言:javascript
复制
mysql> switch kudu_catalog;
Query OK, 0 rows affected (0.00 sec)
​
mysql> use default;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
​
Database changed
​
mysql> select * from test_table limit 10;
+------+----------+--------+
| key  | value    | added  |
+------+----------+--------+
|    0 | NULL     | 12.345 |
|    4 | NULL     | 12.345 |
|   20 | NULL     | 12.345 |
|   26 | NULL     | 12.345 |
|   29 | value 29 | 12.345 |
|   42 | NULL     | 12.345 |
|   50 | NULL     | 12.345 |
|   56 | NULL     | 12.345 |
|   66 | NULL     | 12.345 |
|   74 | NULL     | 12.345 |
+------+----------+--------+
10 rows in set (1.49 sec)

联邦查询

代码语言:javascript
复制
mysql> select * from delta_lake.`default`.customer c join kudu_catalog.`default`.test_table t on c.c_custkey = t.`key` where c.c_custkey < 50;
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+------+----------+--------+
| c_custkey | c_name             | c_address                             | c_nationkey | c_phone         | c_acctbal | c_mktsegment | c_comment                                                                                              | key  | value    | added  |
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+------+----------+--------+
|         1 | Customer#000000001 | IVhzIApeRb ot,c,E                     |          15 | 25-989-741-2988 |    711.56 | BUILDING     | to the even, regular platelets. regular, ironic epitaphs nag e                                         |    1 | value 1  | 12.345 |
|        33 | Customer#000000033 | qFSlMuLucBmx9xnn5ib2csWUweg D         |          17 | 27-375-391-1280 |    -78.56 | AUTOMOBILE   | s. slyly regular accounts are furiously. carefully pending requests                                    |   33 | value 33 | 12.345 |
|         3 | Customer#000000003 | MG9kdTD2WBHm                          |           1 | 11-719-748-3364 |   7498.12 | AUTOMOBILE   |  deposits eat slyly ironic, even instructions. express foxes detect slyly. blithely even accounts abov |    3 | value 3  | 12.345 |
|        35 | Customer#000000035 | TEjWGE4nBzJL2                         |          17 | 27-566-888-7431 |   1228.24 | HOUSEHOLD    | requests. special, express requests nag slyly furiousl                                                 |   35 | value 35 | 12.345 |
|         2 | Customer#000000002 | XSTf4,NCwDVaWNe6tEgvwfmRchLXak        |          13 | 23-768-687-3665 |    121.65 | AUTOMOBILE   | l accounts. blithely ironic theodolites integrate boldly: caref                                        |    2 | NULL     | 12.345 |
|        34 | Customer#000000034 | Q6G9wZ6dnczmtOx509xgE,M2KV            |          15 | 25-344-968-5422 |   8589.70 | HOUSEHOLD    | nder against the even, pending accounts. even                                                          |   34 | NULL     | 12.345 |
|        32 | Customer#000000032 | jD2xZzi UmId,DCtNBLXKj9q0Tlp2iQ6ZcO3J |          15 | 25-430-914-2194 |   3471.53 | BUILDING     | cial ideas. final, furious requests across the e                                                       |   32 | NULL     | 12.345 |
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+------+----------+--------+
7 rows in set (0.13 sec)

适配新的 Trino Connector

本小节以 Trino Kafka Connector 插件为例,演示如何在 Doris 中适配 Trino Connector 插件,以及通过 Doris 的 Trino-Connector-Catalog 访问对应数据源。

节选自 Apache Doris 官网文档,完整内容可见:如何接入一个新的 Trino Connector 插件 - Apache Doris

01 编译 Kakfa Connector 插件

Trino 官方并未提供编译好的 Connector 插件,因此需要根据需求自行编译。编译步骤如下:

  • 拉取 Trino 源码: $ git clone https://github.com/trinodb/trino.git
  • 将 Trino 切换至 435 版本: $ git checkout 435
  • 进入 Kafka 插件源码目录: $ cd trino/plugin/trino-kafka
  • 编译 Kafka 插件: $ mvn clean install -DskipTest
  • 编译完成后,trino/plugin/trino-kafka/目录下会生成target/trino-kafka-435目录

注意:

  • 每一个 Connector 插件都是一个子目录,不是 JAR 包。
  • 由于 Doris 当前使用 435 版本的 trino-main 包,建议编译 435 版本的 Connector 插件。其他版本的 Connector 插件可能会存在兼容性问题。如在使用中遇到问题,随时向 Apache Doris 社区反馈。

02 设置 Doris 的 fe.conf / be.conf

Kafka Connector 插件编译完成后,需对 Doris 的 fe.confbe.conf进行配置,使 Doris 能够找到该插件。

首先将上述准备好的 trino-kafka-435 目录存放在 /path/to/connectors 目录下,接着进行配置:

  • fe.conf: 在 fe.conf 文件中配置 trino_connector_plugin_dir=/path/to/connectors (若 fe.conf 中没有配置 trino_connector_plugin_dir 属性,则默认使用 ${Doris_HOME}/fe/connectors 目录)
  • be.conf: 在 be.conf 文件中配置 trino_connector_plugin_dir=/path/to/connectors (若 be.conf 中没有配置 trino_connector_plugin_dir 属性 ,则默认使用 ${Doris_HOME}/be/connectors 目录)

注意:Doris 采用懒加载的方式加载 Trino Connector 插件,这意味着如果第一次在 Doris 中使用 Trino-Connector Catalog 功能,无需重启 FE / BE 节点、Doris 会自动加载插件,且只加载 1 次。而如果 /path/to/connectors/ 目录下插件发生了变化,则需重启 FE / BE 节点,重新加载变化后的插件。

03 使用 Trino-Connector-Catalog 功能

完成前面步骤后,即可在 Doris 中使用 Trino-Connector Catalog 功能。

1. 在 Doris 中创建一个 Trino-Connector Catalog:

代码语言:javascript
复制
  create catalog kafka_tpch properties (
  "type"="trino-connector",
  -- 下面这四个属性来源于 trino,与 trino 的 etc/catalog/kakfa.properties 中的属性一致。
  "trino.connector.name"="kafka",
  "trino.kafka.table-names"="tpch.customer,tpch.orders,tpch.lineitem,tpch.part,tpch.partsupp,tpch.supplier,tpch.nation,tpch.region",
  "trino.kafka.nodes"="localhost:9092",
  "trino.kafka.table-description-dir" = "/mnt/datadisk1/fangtiewei"
  );
  • type关于 Catalog 类型必须设置为trino-connector` ;
  • 属性 trino.connector.nametrino.kafka.table-namestrino.kafka.nodestrino.kafka.table-description-dir 均来源于 Trino,具体可参考:Kafka connector
  • 不同的 Connector 插件应该设置不同的属性,可参考 Trino 官方文档:Connectors

2. 使用 Catalog

创建 Trino-Connector Catalog 后,使用方式与其他 Catalog 完全相同。通过 switch kafka_tpch 语句切换到该 Catalog 后,即可查询 Kafka 数据源中数据。

结束语

后续我们还将陆续推出 Apache Doris 与其他主流数据湖格式、存储系统构建湖仓一体架构的使用指南和方法论,请持续关注。

往期 Lakehouse 使用手册可查阅:

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 使用指南
    • 01 环境准备
      • 02 环境部署
        • 03 创建 Catalog
          • 04 数据查询
          • 适配新的 Trino Connector
            • 01 编译 Kakfa Connector 插件
              • 02 设置 Doris 的 fe.conf / be.conf
                • 03 使用 Trino-Connector-Catalog 功能
                • 结束语
                相关产品与服务
                数据库
                云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档