首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >机器学习入门(三):K近邻算法原理 | KNN算法原理

机器学习入门(三):K近邻算法原理 | KNN算法原理

作者头像
小言从不摸鱼
发布2024-09-10 18:40:45
发布2024-09-10 18:40:45
2680
举报
文章被收录于专栏:机器学习入门机器学习入门

🍔​​​​​​​ 前言

朋友们大家好,让我们一起踏入机器学习的奇妙世界,先来聊聊一位特别“邻近”的朋友——KNN算法。想象一下,当你在陌生的城市找餐馆,可能会问附近的朋友:“嘿,你们常去哪家吃?”KNN算法就像这样,它找“最邻近”的样本朋友来帮你做决定。简单直接,却能在分类和回归问题上展现不凡力量。

学习目标

理解KNN 算法原理

🍔 为什么学习KNN算法

KNN是监督学习分类算法,主要解决现实生活中分类问题。

根据目标的不同将监督学习任务分为了分类学习及回归预测问题。

监督学习任务的基本流程和架构:

(1)首先准备数据,可以是视频、音频、文本、图片等等

(2)抽取所需要的一些列特征,形成特征向量(Feature Vectors)

(3)将这些特征向量连同标记(Label)一并送入机器学习算法中,训练出一个预测模型(Predictive Model)。

(4)然后,采用同样的特征提取方法作用于新数据,得到用于测试的特征向量。

(5)最后,使用预测模型对这些待测的特征向量进行预测并得到结果(Expected Model)。

上述步骤示意如下:

KNN(K-Nearest Neihbor,KNN)K近邻是机器学习算法中理论最简单,最好理解的算法,是一个非常适合入门的算法,拥有如下特性:

  • 思想极度简单,应用数学知识少(近乎为零),对于很多不擅长数学的小伙伴十分友好
  • 虽然算法简单,但效果也不错

🍔 KNN 原理

2.1 案例剖析

上图中每一个数据点代表一个肿瘤病历:

  • 横轴表示肿瘤大小,纵轴表示发现时间
  • 恶性肿瘤用蓝色表示,良性肿瘤用红色表示

疑问:新来了一个病人(下图绿色的点),如何判断新来的病人(即绿色点)是良性肿瘤还是恶性肿瘤?

解决方法:k-近邻算法的做法如下:

(1)取一个值k=3(k值后面介绍,现在可以理解为算法的使用者根据经验取的最优值

(2)在所有的点中找到距离绿色点最近的三个点

(3)让最近的点所属的类别进行投票

(4)最近的三个点都是蓝色的,所以该病人对应的应该也是蓝色,即恶性肿瘤。

总结:

K-近邻算法可以用来解决监督学习中的分类问题。 算法的思想:通过K个最近的已知分类的样本来判断未知样本的类别。

2.2 算法原理

KNN算法描述

输入:训练数据集 ,xi为实例的特征向量,yi={C1,c2...Ck}为实例类别。 输出:实例x所属的类别y 步骤: (1)选择参数K (2)计算未知实例与所有已知实例的距离(多种方式计算距离) (3)选择最近K个已知实例 (4)根据少数服从多数的原则进行投票,让未知实例归类为K个最近邻中最多数的类别。 总结:KNN算法没有明显的特征训练过程,它的训练阶段仅仅将样本保存起来,训练开销为0,等到收到测试样本后在进行处理(如K值取值和距离计算)。因此,对应于训练阶段的学习该算法是一种懒惰学习(lazy learning)。

KNN三要素:

  • 距离度量
  • K值选择
  • 分类决策准则

🍔 小结

让我们静下心来回忆一下本篇文章的内容:

🍬 KNN 算法原理简单,不需要训练,属于监督学习算法,常用来解决分类问题

🍬 KNN原理:先确定K值, 再计算距离,最后挑选K个最近的邻居进行投票

希望本篇文章对您有所帮助,感谢支持!

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-08-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 🍔​​​​​​​ 前言
  • 🍔 为什么学习KNN算法
  • 🍔 KNN 原理
    • 2.1 案例剖析
    • 2.2 算法原理
  • 🍔 小结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档