前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【机器学习】揭开激活函数的神秘面纱

【机器学习】揭开激活函数的神秘面纱

作者头像
小言从不摸鱼
发布2024-09-10 19:56:19
1550
发布2024-09-10 19:56:19
举报
文章被收录于专栏:机器学习入门

学习目标 🍀 理解非线性因素 🍀 知道常见激活函数


🍔 什么是激活函数

激活函数(Activation Function)是神经网络中非常关键的组成部分,主要用于在神经网络的节点(或称神经元)上引入非线性因素。这是因为神经网络的基本计算单元是线性加权和,而单纯的线性组合无法模拟现实世界中复杂的非线性关系。通过引入激活函数,神经网络能够学习并模拟各种复杂的映射关系。

🐻 激活函数的主要作用包括:

  1. 引入非线性:如前所述,通过激活函数可以为神经网络提供非线性建模能力,使得神经网络能够学习并解决复杂的问题。
  2. 控制信息的传递:激活函数通过决定哪些信息能够通过(即函数值非零)或哪些信息被抑制(即函数值为零或接近零),来影响网络的训练过程和输出结果。

🐼 常见的激活函数包括:

  • Sigmoid函数
  • Tanh函数
  • ReLU(Rectified Linear Unit)函数
  • SoftMax函数

🍔 网络非线性因素的理解

激活函数用于对每层的输出数据进行变换, 进而为整个网络结构结构注入了非线性因素。此时, 神经网络就可以拟合各种曲线。如果不使用激活函数,整个网络虽然看起来复杂,其本质还相当于一种线性模型,如下公式所示:

  1. 没有引入非线性因素的网络等价于使用一个线性模型来拟合
  2. 通过给网络输出增加激活函数, 实现引入非线性因素, 使得网络模型可以逼近任意函数, 提升网络对复杂问题的拟合能力.

🍔 常见的激活函数

激活函数主要用来向神经网络中加入非线性因素,以解决线性模型表达能力不足的问题,它对神经网络有着极其重要的作用。我们的网络参数在更新时,使用的反向传播算法(BP),这就要求我们的激活函数必须可微。

2.1 sigmoid 激活函数

sigmoid 激活函数的函数图像如下:

从 sigmoid 函数图像可以得到,sigmoid 函数可以将任意的输入映射到 (0, 1) 之间,当输入的值大致在 <-6 或者 >6 时,意味着输入任何值得到的激活值都是差不多的,这样会丢失部分的信息。比如:输入 100 和输出 10000 经过 sigmoid 的激活值几乎都是等于 1 的,但是输入的数据之间相差 100 倍的信息就丢失了。

对于 sigmoid 函数而言,输入值在 [-6, 6] 之间输出值才会有明显差异,输入值在 [-3, 3] 之间才会有比较好的效果。

通过上述导数图像,我们发现导数数值范围是 (0, 0.25),当输入 <-6 或者 >6 时,sigmoid 激活函数图像的导数接近为 0,此时网络参数将更新极其缓慢,或者无法更新。

一般来说, sigmoid 网络在 5 层之内就会产生梯度消失现象。而且,该激活函数并不是以 0 为中心的,所以在实践中这种激活函数使用的很少。sigmoid函数一般只用于二分类的输出层。

在 PyTorch 中使用 sigmoid 函数的示例代码如下:

代码语言:javascript
复制
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F


def test():
    _, axes = plt.subplots(1, 2)

    # 函数图像
    x = torch.linspace(-20, 20, 1000)
    y = F.tanh(x)
    axes[0].plot(x, y)
    axes[0].grid()
    axes[0].set_title('Sigmoid 函数图像')

    # 导数图像
    x = torch.linspace(-20, 20, 1000, requires_grad=True)
    torch.sigmoid(x).sum().backward()

    axes[1].plot(x.detach(), x.grad)
    axes[1].grid()
    axes[1].set_title('Sigmoid 导数图像')

    plt.show()


if __name__ == '__main__':
    test()

2.2 tanh 激活函数

Tanh 叫做双曲正切函数,其公式如下:

Tanh 的函数图像、导数图像如下:

由上面的函数图像可以看到,Tanh 函数将输入映射到 (-1, 1) 之间,图像以 0 为中心,在 0 点对称,当输入 大概<-3 或者 >3 时将被映射为 -1 或者 1。其导数值范围 (0, 1),当输入的值大概 <-3 或者 > 3 时,其导数近似 0。

与 Sigmoid 相比,它是以 0 为中心的,使得其收敛速度要比 Sigmoid 快,减少迭代次数。然而,从图中可以看出,Tanh 两侧的导数也为 0,同样会造成梯度消失。

若使用时可在隐藏层使用tanh函数,在输出层使用sigmoid函数。

代码语言:javascript
复制
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F


def test():

    _, axes = plt.subplots(1, 2)

    # 函数图像
    x = torch.linspace(-20, 20, 1000)
    y = F.tanh(x)
    axes[0].plot(x, y)
    axes[0].grid()
    axes[0].set_title('Tanh 函数图像')

    # 导数图像
    x = torch.linspace(-20, 20, 1000, requires_grad=True)
    F.tanh(x).sum().backward()

    axes[1].plot(x.detach(), x.grad)
    axes[1].grid()
    axes[1].set_title('Tanh 导数图像')

    plt.show()

if __name__ == '__main__':
    test()

2.3 ReLU 激活函数

ReLU 激活函数公式如下:

函数图像如下:

从上述函数图像可知,ReLU 激活函数将小于 0 的值映射为 0,而大于 0 的值则保持不变,它更加重视正信号,而忽略负信号,这种激活函数运算更为简单,能够提高模型的训练效率。

但是,如果我们网络的参数采用随机初始化时,很多参数可能为负数,这就使得输入的正值会被舍去,而输入的负值则会保留,这可能在大部分的情况下并不是我们想要的结果。

ReLU 的导数图像如下:

ReLU是目前最常用的激活函数。 从图中可以看到,当x<0时,ReLU导数为0,而当x>0时,则不存在饱和问题。所以,ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。然而,随着训练的推进,部分输入会落入小于0区域,导致对应权重无法更新。这种现象被称为“神经元死亡”。

与sigmoid相比,RELU的优势是:

采用sigmoid函数,计算量大(指数运算),反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。 sigmoid函数反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。 Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。

2.4 SoftMax

softmax用于多分类过程中,它是二分类函数sigmoid在多分类上的推广,目的是将多分类的结果以概率的形式展现出来。

计算方法如下图所示:

Softmax 直白来说就是将网络输出的 logits 通过 softmax 函数,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们将它理解成概率,选取概率最大(也就是值对应最大的)节点,作为我们的预测目标类别。

代码语言:javascript
复制
import torch


if __name__ == '__main__':

    scores = torch.tensor([0.2, 0.02, 0.15, 0.15, 1.3, 0.5, 0.06, 1.1, 0.05, 3.75])
    probabilities = torch.softmax(scores, dim=0)
    print(probabilities)

程序输出结果:

代码语言:javascript
复制
tensor([0.0212, 0.0177, 0.0202, 0.0202, 0.0638, 0.0287, 0.0185, 0.0522, 0.0183,
        0.7392])

🍔 小节

本小节带着同学们了解下常见的激活函数,以及对应的 API 的使用。除了上述的激活函数,还存在很多其他的激活函数,如下图所示:

这么多激活函数, 我们应该如何选择呢?

🍬 对于隐藏层(输入层和输出层之间的都是隐藏层):

  1. 优先选择RELU激活函数
  2. 如果ReLu效果不好,那么尝试其他激活,如Leaky ReLu等。
  3. 如果你使用了Relu, 需要注意一下Dead Relu问题, 避免出现大的梯度从而导致过多的神经元死亡。
  4. 不要使用sigmoid激活函数,可以尝试使用tanh激活函数

🍬 对于输出层(输出 y 的那一层):

  1. 二分类问题选择sigmoid激活函数
  2. 多分类问题选择softmax激活函数
  3. 回归问题选择identity激活函数
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-09-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 🍔 什么是激活函数
  • 🍔 网络非线性因素的理解
  • 🍔 常见的激活函数
    • 2.1 sigmoid 激活函数
      • 2.2 tanh 激活函数
        • 2.3 ReLU 激活函数
          • 2.4 SoftMax
          • 🍔 小节
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档